Nested Cross Validation for the Relaxed Lasso and Other Machine Learning Models


[Up] [Top]

Documentation for package ‘glmnetr’ version 0.5-2

Help Pages

aicreg Identify model based upon AIC criteria from a stepreg() putput
ann_tab_cv Fit an Artificial Neural Network model on "tabular" provided as a matrix, optionally allowing for an offset term
ann_tab_cv_best Fit multiple Artificial Neural Network models on "tabular" provided as a matrix, and keep the best one.
best.preds Get the best models for the steps of a stepreg() fit
boot.factor.foldid Generate foldid's by 0/1 factor for bootstrap like samples where unique option between 0 and 1
calceloss calculate cross-entry for multinomial outcomes
calplot Construct calibration plots for a nested.glmnetr output object
cox.sat.dev Calculate the CoxPH saturated log-likelihood
cv.glmnetr Get a cross validation informed relaxed lasso model fit.
cv.stepreg Cross validation informed stepwise regression model fit.
devrat_ Calculate deviance ratios for CV based
diff_time Output to console the elapsed and split times
diff_time1 Get elapsed time in c(hour, minute, secs)
factor.foldid Generate foldid's by factor levels
get.foldid Get foldid's with branching for cox, binomial and gaussian models
glmnetr Fit relaxed part of lasso model
glmnetr.cis A redirect to nested.cis()
glmnetr.compcv A redirect to nested.compare
glmnetr.simdata Generate example data
glmnetr_seed Get seeds to store, facilitating replicable results
nested.cis Calculate performance measure CI's and p's
nested.compare Compare cross validation fit performances from a nested.glmnetr output.
nested.glmnetr Using (nested) cross validation, describe and compare some machine learning model performances
orf_tune Fit a Random Forest model on data provided in matrix and vector formats.
plot.cv.glmnetr Plot cross-validation deviances, or model coefficients.
plot.glmnetr Plot the relaxed lasso coefficients.
plot.nested.glmnetr Plot results from a nested.glmnetr() output
plot_perf_glmnetr Plot nested cross validation performance summaries
predict.cv.glmnetr Give predicteds based upon a cv.glmnetr() output object.
predict.cv.stepreg Beta's or predicteds based upon a cv.stepreg() output object.
predict.glmnetr Get predicteds or coefficients using a glmnetr output object
predict.nested.glmnetr Give predicteds based upon the cv.glmnet output object contained in the nested.glmnetr output object.
predict_ann_tab Get predicteds for an Artificial Neural Network model fit in nested.glmnetr()
print.nested.glmnetr A redirect to the summary() function for nested.glmnetr() output objects
print.orf_tune Print output from orf_tune() function
print.rf_tune Print output from rf_tune() function
rederive_orf Rederive Oblique Random Forest models not kept in nested.glmnetr() output
rederive_rf Rederive Random Forest models not kept in nested.glmnetr() output
rederive_xgb Rederive XGB models not kept in nested.glmnetr() output
rf_tune Fit a Random Forest model on data provided in matrix and vector formats.
roundperf round elements of a summary.glmnetr() output
stepreg Fit the steps of a stepwise regression.
summary.cv.glmnetr Output summary of a cv.glmnetr() output object.
summary.cv.stepreg Summarize results from a cv.stepreg() output object.
summary.nested.glmnetr Summarize a nested.glmnetr() output object
summary.orf_tune Summarize output from rf_tune() function
summary.rf_tune Summarize output from rf_tune() function
summary.stepreg Briefly summarize steps in a stepreg() output object, i.e. a stepwise regression fit
xgb.simple Get a simple XGBoost model fit (no tuning)
xgb.tuned Get a tuned XGBoost model fit