aicreg |
Identify model based upon AIC criteria from a stepreg() putput |
ann_tab_cv |
Fit an Artificial Neural Network model on "tabular" provided as a matrix, optionally allowing for an offset term |
ann_tab_cv_best |
Fit multiple Artificial Neural Network models on "tabular" provided as a matrix, and keep the best one. |
best.preds |
Get the best models for the steps of a stepreg() fit |
boot.factor.foldid |
Generate foldid's by 0/1 factor for bootstrap like samples where unique option between 0 and 1 |
calceloss |
calculate cross-entry for multinomial outcomes |
calplot |
Construct calibration plots for a nested.glmnetr output object |
cox.sat.dev |
Calculate the CoxPH saturated log-likelihood |
cv.glmnetr |
Get a cross validation informed relaxed lasso model fit. |
cv.stepreg |
Cross validation informed stepwise regression model fit. |
devrat_ |
Calculate deviance ratios for CV based |
diff_time |
Output to console the elapsed and split times |
diff_time1 |
Get elapsed time in c(hour, minute, secs) |
factor.foldid |
Generate foldid's by factor levels |
get.foldid |
Get foldid's with branching for cox, binomial and gaussian models |
glmnetr |
Fit relaxed part of lasso model |
glmnetr.cis |
A redirect to nested.cis() |
glmnetr.compcv |
A redirect to nested.compare |
glmnetr.simdata |
Generate example data |
glmnetr_seed |
Get seeds to store, facilitating replicable results |
nested.cis |
Calculate performance measure CI's and p's |
nested.compare |
Compare cross validation fit performances from a nested.glmnetr output. |
nested.glmnetr |
Using (nested) cross validation, describe and compare some machine learning model performances |
orf_tune |
Fit a Random Forest model on data provided in matrix and vector formats. |
plot.cv.glmnetr |
Plot cross-validation deviances, or model coefficients. |
plot.glmnetr |
Plot the relaxed lasso coefficients. |
plot.nested.glmnetr |
Plot results from a nested.glmnetr() output |
plot_perf_glmnetr |
Plot nested cross validation performance summaries |
predict.cv.glmnetr |
Give predicteds based upon a cv.glmnetr() output object. |
predict.cv.stepreg |
Beta's or predicteds based upon a cv.stepreg() output object. |
predict.glmnetr |
Get predicteds or coefficients using a glmnetr output object |
predict.nested.glmnetr |
Give predicteds based upon the cv.glmnet output object contained in the nested.glmnetr output object. |
predict_ann_tab |
Get predicteds for an Artificial Neural Network model fit in nested.glmnetr() |
print.nested.glmnetr |
A redirect to the summary() function for nested.glmnetr() output objects |
print.orf_tune |
Print output from orf_tune() function |
print.rf_tune |
Print output from rf_tune() function |
rederive_orf |
Rederive Oblique Random Forest models not kept in nested.glmnetr() output |
rederive_rf |
Rederive Random Forest models not kept in nested.glmnetr() output |
rederive_xgb |
Rederive XGB models not kept in nested.glmnetr() output |
rf_tune |
Fit a Random Forest model on data provided in matrix and vector formats. |
roundperf |
round elements of a summary.glmnetr() output |
stepreg |
Fit the steps of a stepwise regression. |
summary.cv.glmnetr |
Output summary of a cv.glmnetr() output object. |
summary.cv.stepreg |
Summarize results from a cv.stepreg() output object. |
summary.nested.glmnetr |
Summarize a nested.glmnetr() output object |
summary.orf_tune |
Summarize output from rf_tune() function |
summary.rf_tune |
Summarize output from rf_tune() function |
summary.stepreg |
Briefly summarize steps in a stepreg() output object, i.e. a stepwise regression fit |
xgb.simple |
Get a simple XGBoost model fit (no tuning) |
xgb.tuned |
Get a tuned XGBoost model fit |