summary.cv.glmnetr {glmnetr} | R Documentation |
Output summary of a cv.glmnetr() output object.
Description
Summarize the cross-validation informed model fit. The fully penalized (gamma=1) beta estimate will not be given by default but can too be output using printg1=TRUE.
Usage
## S3 method for class 'cv.glmnetr'
summary(object, printg1 = "FALSE", orderall = FALSE, ...)
Arguments
object |
a cv.glmnetr() output object. |
printg1 |
TRUE to also print out the fully penalized lasso beta, else FALSE to suppress. |
orderall |
By default (orderall=FALSE) the order terms enter into the lasso model is given for the number of terms that enter in lasso minimizing loss model. If orderall=TRUE then all terms that are included in any lasso fit are described. |
... |
Additional arguments passed to the summary function. |
Value
Coefficient estimates (beta)
See Also
predict.cv.glmnetr
, cv.glmnetr
, nested.glmnetr
Examples
# set seed for random numbers, optionally, to get reproducible results
set.seed(82545037)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
cv.glmnetr.fit = cv.glmnetr(xs, NULL, y_, NULL, family="gaussian", folds_n=3, limit=2)
summary(cv.glmnetr.fit)
[Package glmnetr version 0.5-2 Index]