bbinompdf |
Probability density for a hierarchical prior setup for the elements of the adjacency matrix based on the beta binomial distribution |
betapdf |
The four-parameter Beta probability density function |
beta_priors |
Set prior specifications for the slope parameters |
beta_sampler |
An R6 class for sampling slope parameters |
covid |
Covid incidences data |
logdetAinvUpdate |
Efficient update of the log-determinant and the matrix inverse |
logdetPaceBarry |
Pace and Barry's log determinant approximation |
normalgamma |
A Markov Chain Monte Carlo (MCMC) sampler for a linear panel model |
plot.estimateW |
Graphical summary of the estimated adjacency matrix Omega |
plot.sim_dgp |
Graphical summary of a generated spatial weight matrix |
rho_priors |
Specify prior for the spatial autoregressive parameter and sampling settings |
rho_sampler |
An R6 class for sampling the spatial autoregressive parameter rho |
sar |
A Markov Chain Monte Carlo (MCMC) sampler for the panel spatial autoregressive model (SAR) with exogenous spatial weight matrix. |
sarw |
A Markov Chain Monte Carlo (MCMC) sampler for the panel spatial autoregressive model (SAR) with unknown spatial weight matrix |
sdm |
A Markov Chain Monte Carlo (MCMC) sampler for the panel spatial Durbin model (SDM) with exogenous spatial weight matrix. |
sdmw |
A Markov Chain Monte Carlo (MCMC) sampler for the panel spatial Durbin model (SDM) with unknown spatial weight matrix |
sigma_priors |
Set prior specification for the error variance using an inverse Gamma distribution |
sigma_sampler |
An R6 class for sampling for sampling sigma^2 |
sim_dgp |
Simulating from a data generating process |
slxw |
A Markov Chain Monte Carlo (MCMC) sampler for the panel spatial SLX model with unknown spatial weight matrix |
W_priors |
Set prior specifications for the spatial weight matrix |
W_sampler |
An R6 class for sampling the elements of W |