rho_sampler {estimateW} | R Documentation |
An R6 class for sampling the spatial autoregressive parameter \rho
Description
An R6 class for sampling the spatial autoregressive parameter \rho
An R6 class for sampling the spatial autoregressive parameter \rho
Format
An R6Class
generator object
Details
This class samples the spatial autoregressive parameter using either a tuned random-walk
Metropolis-Hastings or a griddy Gibbs step. Use the rho_priors
class for setup.
For the Griddy-Gibbs algorithm see Ritter and Tanner (1992).
Public fields
rho_prior
The current
rho_priors
curr_rho
The current value of
\rho
curr_W
The current spatial weight matrix
W
; ann
byn
matrix.curr_A
The current spatial filter matrix
I - \rho W
.curr_AI
The inverse of
curr_A
curr_logdet
The current log-determinant of
curr_A
curr_logdets
A set of log-determinants for various values of
\rho
. See therho_priors
function for settings of step site and other parameters of the grid.
Methods
Public methods
Method new()
Usage
rho_sampler$new(rho_prior, W = NULL)
Arguments
rho_prior
The list returned by
rho_priors
W
An optional starting value for the spatial weight matrix
W
Method stopMHtune()
Function to stop the tuning of the Metropolis-Hastings step. The tuning of the Metropolis-Hastings step is usually carried out until half of the burn-in phase. Call this function to turn it off.
Usage
rho_sampler$stopMHtune()
Method setW()
Usage
rho_sampler$setW(newW, newLogdet = NULL, newA = NULL, newAI = NULL)
Arguments
newW
The updated spatial weight matrix
W
.newLogdet
An optional value for the log determinant corresponding to
newW
andcurr_rho
.newA
An optional value for the spatial projection matrix using
newW
andcurr_rho
.newAI
An optional value for the matrix inverse of
newA
.
Method sample()
Usage
rho_sampler$sample(Y, mu, sigma)
Arguments
Y
The
n
byT
matrix of responses.mu
The
n
byT
matrix of means.sigma
The variance parameter
\sigma^2
.
Method sample_Griddy()
Usage
rho_sampler$sample_Griddy(Y, mu, sigma)
Arguments
Y
The
n
byT
matrix of responses.mu
The
n
byT
matrix of means.sigma
The variance parameter
\sigma^2
.
Method sample_MH()
Usage
rho_sampler$sample_MH(Y, mu, sigma)
Arguments
Y
The
n
byT
matrix of responses.mu
The
n
byT
matrix of means.sigma
The variance parameter
\sigma^2
.
References
Ritter, C., and Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419), 861-868.