| W_sampler {estimateW} | R Documentation |
An R6 class for sampling the elements of W
Description
An R6 class for sampling the elements of W
An R6 class for sampling the elements of W
Format
An R6Class generator object
Details
This class samples the spatial weight matrix. Use the function W_priors class for setup.
The sampling procedure relies on conditional Bernoulli posteriors outlined in Krisztin and Piribauer (2022).
Public fields
W_priorThe current
W_priorscurr_wnumeric, non-negative
nbynspatial weight matrix with zeros on the main diagonal. Depending on theW_priorssettings can be symmetric and/or row-standardized.curr_Wbinary
nbynspatial connectivity matrix\Omegacurr_AThe current spatial projection matrix
I - \rho W.curr_AIThe inverse of
curr_Acurr_logdetThe current log-determinant of
curr_Acurr_rhosingle number between -1 and 1 or NULL, depending on whether the sampler updates the spatial autoregressive parameter
\rho. Set while invokinginitializeor using the functionset_rho.
Methods
Public methods
Method new()
Usage
W_sampler$new(W_prior, curr_rho = NULL)
Arguments
W_priorThe list returned by
W_priorscurr_rhooptional single number between -1 and 1. Value of the spatial autoregressive parameter
\rho. Defaults to NULL, in which case no updates of the log-determinant, the spatial projection matrix, and its inverse are carried out.
Method set_rho()
If the spatial autoregressive parameter \rho is updated during the sampling procedure the log determinant, the
spatial projection matrix I - \rho W and it's inverse must be updated. This function should be
used for a consistent update. At least the new scalar value for \rho must be supplied.
Usage
W_sampler$set_rho(new_rho, newLogdet = NULL, newA = NULL, newAI = NULL)
Arguments
new_rhosingle, number; must be between -1 and 1.
newLogdetAn optional value for the log determinant corresponding to
newWandcurr_rhonewAAn optional value for the spatial projection matrix using
newWandcurr_rhonewAIAn optional value for the matrix inverse of
newA
Method sample()
Usage
W_sampler$sample(Y, curr_sigma, mu, lag_mu = matrix(0, nrow(tY), ncol(tY)))
Arguments
YThe
nbyttmatrix of responsescurr_sigmaThe variance parameter
\sigma^2muThe
nbyttmatrix of means.lag_munbyttmatrix of means that will be spatially lagged with the estimatedW. Defaults to a matrix with zero elements.
References
Krisztin, T., and Piribauer, P. (2022) A Bayesian approach for the estimation of weight matrices in spatial autoregressive models. Spatial Economic Analysis, 1-20.