betapdf {estimateW} | R Documentation |
The four-parameter Beta probability density function
Description
A four-parameter Beta specification as the prior for the spatial autoregressive parameter \rho
,
as proposed by LeSage and Parent (2007) .
Usage
betapdf(rho, a = 1, b = 1, rmin = 0, rmax = 1)
Arguments
rho |
The scalar value for |
a |
The first shape parameter of the Beta distribution |
b |
The second shape parameter of the Beta distribution |
rmin |
Scalar |
rmax |
Scalar |
Details
The prior density is given by:
p(\rho) \sim \frac{1}{Beta(a,b)} \frac{(\rho - \underline{\rho}_{min})^{(a-1)} (\underline{\rho}_{max} - \rho)^{(b-1)} }{2^{a + b - 1}}
where Beta(a, b)
(a,b > 0
) represents the Beta function,
Beta(a, b)= \int_{0}^{1} t^{a-1} (1-t)^{b-1} dt
.
Value
Density value evaluated at rho
.
References
LeSage, J. P., and Parent, O. (2007) Bayesian model averaging for spatial econometric models. Geographical Analysis, 39(3), 241-267.