Flexible Modeling of Count Data


[Up] [Top]

Documentation for package ‘countSTAR’ version 1.0.2

Help Pages

a_j Inverse rounding function
bam_star Fit Bayesian Additive STAR Model with MCMC
bart_star MCMC Algorithm for BART-STAR
blm_star STAR Bayesian Linear Regression
confint.lmstar Compute asymptotic confidence intervals for STAR linear regression
credBands Compute Simultaneous Credible Bands
ergMean Compute the ergodic (running) mean.
gbm_star Fitting STAR Gradient Boosting Machines via EM algorithm
genEM_star Generalized EM estimation for STAR
genMCMC_star Generalized MCMC Algorithm for STAR
getEffSize Summarize of effective sample size
g_bc Box-Cox transformation
g_bnp Bayesian bootstrap-based transformation
g_cdf Cumulative distribution function (CDF)-based transformation
g_inv_approx Approximate inverse transformation
g_inv_bc Inverse Box-Cox transformation
init_lm_gprior Initialize linear regression parameters assuming a g-prior
lm_star Fitting frequentist STAR linear model via EM algorithm
plot_coef Plot the estimated regression coefficients and credible intervals
plot_fitted Plot the fitted values and the data
plot_pmf Plot the empirical and model-based probability mass functions
predict.lmstar Predict method for response in STAR linear model
pvals Compute coefficient p-values for STAR linear regression using likelihood ratio test
randomForest_star Fit Random Forest STAR with EM algorithm
roaches Data on the efficacy of a pest management system at reducing the number of roaches in urban apartments.
round_floor Rounding function
sample_lm_gprior Sample the linear regression parameters assuming a g-prior
simBaS Compute Simultaneous Band Scores (SimBaS)
simulate_nb_friedman Simulate count data from Friedman's nonlinear regression
simulate_nb_lm Simulate count data from a linear regression
spline_star Estimation for Bayesian STAR spline regression
warpDLM Posterior Inference for warpDLM model with latent structural DLM