g_bnp {countSTAR} | R Documentation |
Bayesian bootstrap-based transformation
Description
Compute one posterior draw from the smoothed transformation
implied by (separate) Bayesian bootstrap models for the CDFs
of y
and X
.
Usage
g_bnp(
y,
xtSigmax = rep(0, length(y)),
zgrid = NULL,
sigma_epsilon = 1,
approx_Fz = FALSE
)
Arguments
y |
|
xtSigmax |
|
zgrid |
optional vector of grid points for evaluating the CDF
of z ( |
sigma_epsilon |
latent standard deviation |
approx_Fz |
logical; if TRUE, use a normal approximation for |
Value
A smooth monotone function which can be used for evaluations of the transformation at each posterior draw.
Examples
# Sample some data:
y = rpois(n = 200, lambda = 5)
# Compute 200 draws of g on a grid:
t = seq(0, max(y), length.out = 100) # grid
g_post = t(sapply(1:500, function(s) g_bnp(y, approx_Fz = TRUE)(t)))
# Plot together:
plot(t, t, ylim = range(g_post), type='n', ylab = 'g(t)', main = 'Bayesian bootstrap posterior: g')
apply(g_post, 1, function(g) lines(t, g, col='gray'))
# And the posterior mean of g:
lines(t, colMeans(g_post), lwd=3)
[Package countSTAR version 1.0.2 Index]