| genMCMC_star {countSTAR} | R Documentation |
Generalized MCMC Algorithm for STAR
Description
Run the MCMC algorithm for STAR given
a function to initialize model parameters; and
a function to sample (i.e., update) model parameters.
The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.
Usage
genMCMC_star(
y,
sample_params,
init_params,
transformation = "np",
y_max = Inf,
nsave = 5000,
nburn = 5000,
nskip = 0,
save_y_hat = FALSE,
verbose = TRUE
)
Arguments
y |
|
sample_params |
a function that inputs data
and outputs an updated list |
init_params |
an initializing function that inputs data |
transformation |
transformation to use for the latent data; must be one of
|
y_max |
a fixed and known upper bound for all observations; default is |
nsave |
number of MCMC iterations to save |
nburn |
number of MCMC iterations to discard |
nskip |
number of MCMC iterations to skip between saving iterations, i.e., save every (nskip + 1)th draw |
save_y_hat |
logical; if TRUE, compute and save the posterior draws of the expected counts, E(y), which may be slow to compute |
verbose |
logical; if TRUE, print time remaining |
Details
STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous *latent* data and (2) connecting the latent data to the observed data via a *transformation and rounding* operation.
Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data model.
There are several options for the transformation. First, the transformation
can belong to the *Box-Cox* family, which includes the known transformations
'identity', 'log', and 'sqrt', as well as a version in which the Box-Cox parameter
is inferred within the MCMC sampler ('box-cox'). Second, the transformation
can be estimated (before model fitting) using the empirical distribution of the
data y. Options in this case include the empirical cumulative
distribution function (CDF), which is fully nonparametric ('np'), or the parametric
alternatives based on Poisson ('pois') or Negative-Binomial ('neg-bin')
distributions. For the parametric distributions, the parameters of the distribution
are estimated using moments (means and variances) of y.
Value
a list with at least the following elements:
-
post.pred: draws from the posterior predictive distribution ofy -
post.sigma: draws from the posterior distribution ofsigma -
post.log.like.point: draws of the log-likelihood for each of thenobservations -
WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion -
p_waic: Effective number of parameters based on WAIC -
post.lambda: draws from the posterior distribution oflambda(NULL unlesstransformation='box-cox') -
fitted.values: the posterior mean of the conditional expectation of the countsy(NULLifsave_y_hat=FALSE) -
post.fitted.values: posterior draws of the conditional mean of the countsy(NULLifsave_y_hat=FALSE)
If the coefficients list from init_params and sample_params contains a named element beta,
e.g. for linear regression, then the function output contains
-
coefficients: the posterior mean of the beta coefficients -
post.beta: draws from the posterior distribution ofbeta -
post.othercoefs: draws from the posterior distribution of any other sampled coefficients, e.g. variance terms
If no beta exists in the parameter coefficients, then the output list just contains
-
coefficients: the posterior mean of all coefficients -
post.beta: draws from the posterior distribution of all coefficients
Additionally, if init_params and sample_params have output mu_test, then the sampler will output
post.predtest, which contains draws from the posterior predictive distribution at test points.
Examples
# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# STAR: log-transformation:
fit_log = genMCMC_star(y = y,
sample_params = function(y, params) sample_lm_gprior(y, X, params),
init_params = function(y) init_lm_gprior(y, X),
transformation = 'log')
# Posterior mean of each coefficient:
coef(fit_log)
# WAIC for STAR-log:
fit_log$WAIC
# MCMC diagnostics:
plot(as.ts(fit_log$post.beta[,1:3]))
# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,
function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')