Aniso_fit | Fit the stationary spatial model |
cov_spatial | Calculate spatial covariance. |
evaluate_CV | Evaluation criteria |
f_mc_kernels | Calculate mixture component kernel matrices. |
kernel_cov | Calculate a kernel covariance matrix. |
make_global_loglik1 | Constructor functions for global parameter estimation. |
make_global_loglik1_kappa | Constructor functions for global parameter estimation. |
make_global_loglik2 | Constructor functions for global parameter estimation. |
make_global_loglik2_kappa | Constructor functions for global parameter estimation. |
make_global_loglik3 | Constructor functions for global parameter estimation. |
make_global_loglik3_kappa | Constructor functions for global parameter estimation. |
make_global_loglik4_kappa | Constructor functions for global parameter estimation. |
make_local_lik | Constructor functions for local parameter estimation. |
mc_N | Calculate local sample sizes. |
NSconvo_fit | Fit the nonstationary spatial model |
NSconvo_sim | Simulate data from the nonstationary model. |
plot.Aniso | Plot of the estimated correlations from the stationary model. |
plot.NSconvo | Plot from the nonstationary model. |
predict.Aniso | Obtain predictions at unobserved locations for the stationary spatial model. |
predict.NSconvo | Obtain predictions at unobserved locations for the nonstationary spatial model. |
simdata | Simulated nonstationary dataset |
summary.Aniso | Summarize the stationary model fit. |
summary.NSconvo | Summarize the nonstationary model fit. |
US.mc.grids | Mixture component grids for the western United States |
US.prediction.locs | Prediction locations for the western United States |
USprecip97 | Annual precipitation measurements from the western United States, 1997 |