f_mc_kernels {convoSPAT} | R Documentation |
Calculate mixture component kernel matrices.
Description
f_mc_kernels
calculates spatially-varying mixture component kernels using
generalized linear models for each of the eigenvalues (lam1 and lam2) and
the angle of rotation (eta).
Usage
f_mc_kernels(
y.min = 0,
y.max = 5,
x.min = 0,
x.max = 5,
N.mc = 3^2,
lam1.coef = c(-1.3, 0.5, -0.6),
lam2.coef = c(-1.4, -0.1, 0.2),
logit.eta.coef = c(0, -0.15, 0.15)
)
Arguments
y.min |
Lower bound for the y-coordinate axis. |
y.max |
Upper bound for the y-coordinate axis. |
x.min |
Lower bound for the y-coordinate axis. |
x.max |
Upper bound for the y-coordinate axis. |
N.mc |
Number of mixture component locations. |
lam1.coef |
Log-linear regression coefficients for lam1; the coefficients correspond to the intercept, longitude, and latitude. |
lam2.coef |
Log-linear regression coefficients for lam2; the coefficients correspond to the intercept, longitude, and latitude. |
logit.eta.coef |
Scaled logit regression coefficients for eta; the coefficients correspond to the intercept, longitude, and latitude. |
Value
A list with the following components:
mc.locations |
A |
mc.kernels |
A |
Examples
f_mc_kernels( y.min = 0, y.max = 5, x.min = 0,
x.max = 5, N.mc = 3^2, lam1.coef = c(-1.3, 0.5, -0.6),
lam2.coef = c(-1.4, -0.1, 0.2), logit.eta.coef = c(0, -0.15, 0.15) )