NSconvo_sim {convoSPAT} | R Documentation |
Simulate data from the nonstationary model.
Description
NSconvo_sim
simulates data from the nonstationary model, given
mixture component kernel matrices. The function requires either a mixture
component kernel object, from the function f.mc.kernels(), or a direct
specification of the mixture component locations and mixture component
kernels.
Usage
NSconvo_sim(
grid = TRUE,
y.min = 0,
y.max = 5,
x.min = 0,
x.max = 5,
N.obs = 20^2,
sim.locations = NULL,
mc.kernels.obj = NULL,
mc.kernels = NULL,
mc.locations = NULL,
lambda.w = NULL,
tausq = 0.1,
sigmasq = 1,
beta.coefs = 4,
kappa = NULL,
covariates = rep(1, N.obs),
cov.model = "exponential"
)
Arguments
grid |
Logical; indicates of the simulated data should fall on a
grid ( |
y.min |
Lower bound for the y-coordinate axis. |
y.max |
Upper bound for the y-coordinate axis. |
x.min |
Lower bound for the y-coordinate axis. |
x.max |
Upper bound for the y-coordinate axis. |
N.obs |
Number of simulated data values. |
sim.locations |
Optional |
mc.kernels.obj |
Object from the |
mc.kernels |
Optional specification of mixture component kernel matrices. |
mc.locations |
Optional specification of mixture component locations. |
lambda.w |
Scalar; tuning parameter for the weight function. |
tausq |
Scalar; true nugget variance. |
sigmasq |
Scalar; true process variance. |
beta.coefs |
Vector of true regression coefficients. Length must
match the number of columns in |
kappa |
Scalar; true smoothness. |
covariates |
Matrix with |
cov.model |
A string specifying the model for the correlation
function; defaults to |
Value
A list with the following components:
sim.locations |
Matrix of locations for the simulated values. |
mc.locations |
Mixture component locations used for the simulated data. |
mc.kernels |
Mixture component kernel matrices used for the simulated data. |
kernel.ellipses |
|
Cov.mat |
True covariance matrix ( |
sim.data |
Simulated data values. |
lambda.w |
Tuning parameter for the weight function. |
Examples
## Not run:
NSconvo_sim( grid = TRUE, y.min = 0, y.max = 5, x.min = 0,
x.max = 5, N.obs = 20^2, sim.locations = NULL, mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL, lambda.w = NULL,
tausq = 0.1, sigmasq = 1, beta.coefs = 4, kappa = NULL,
covariates = rep(1,N.obs), cov.model = "exponential" )
## End(Not run)