| NSconvo_sim {convoSPAT} | R Documentation | 
Simulate data from the nonstationary model.
Description
NSconvo_sim simulates data from the nonstationary model, given
mixture component kernel matrices. The function requires either a mixture
component kernel object, from the function f.mc.kernels(), or a direct
specification of the mixture component locations and mixture component
kernels.
Usage
NSconvo_sim(
  grid = TRUE,
  y.min = 0,
  y.max = 5,
  x.min = 0,
  x.max = 5,
  N.obs = 20^2,
  sim.locations = NULL,
  mc.kernels.obj = NULL,
  mc.kernels = NULL,
  mc.locations = NULL,
  lambda.w = NULL,
  tausq = 0.1,
  sigmasq = 1,
  beta.coefs = 4,
  kappa = NULL,
  covariates = rep(1, N.obs),
  cov.model = "exponential"
)
Arguments
| grid | Logical; indicates of the simulated data should fall on a
grid ( | 
| y.min | Lower bound for the y-coordinate axis. | 
| y.max | Upper bound for the y-coordinate axis. | 
| x.min | Lower bound for the y-coordinate axis. | 
| x.max | Upper bound for the y-coordinate axis. | 
| N.obs | Number of simulated data values. | 
| sim.locations | Optional  | 
| mc.kernels.obj | Object from the  | 
| mc.kernels | Optional specification of mixture component kernel matrices. | 
| mc.locations | Optional specification of mixture component locations. | 
| lambda.w | Scalar; tuning parameter for the weight function. | 
| tausq | Scalar; true nugget variance. | 
| sigmasq | Scalar; true process variance. | 
| beta.coefs | Vector of true regression coefficients. Length must
match the number of columns in  | 
| kappa | Scalar; true smoothness. | 
| covariates | Matrix with  | 
| cov.model | A string specifying the model for the correlation
function; defaults to  | 
Value
A list with the following components:
| sim.locations | Matrix of locations for the simulated values. | 
| mc.locations | Mixture component locations used for the simulated data. | 
| mc.kernels | Mixture component kernel matrices used for the simulated data. | 
| kernel.ellipses | 
 | 
| Cov.mat | True covariance matrix ( | 
| sim.data | Simulated data values. | 
| lambda.w | Tuning parameter for the weight function. | 
Examples
## Not run: 
NSconvo_sim( grid = TRUE, y.min = 0, y.max = 5, x.min = 0,
x.max = 5, N.obs = 20^2, sim.locations = NULL, mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL, lambda.w = NULL,
tausq = 0.1, sigmasq = 1, beta.coefs = 4, kappa = NULL,
covariates = rep(1,N.obs), cov.model = "exponential" )
## End(Not run)