Aniso_fit {convoSPAT} | R Documentation |
Fit the stationary spatial model
Description
Aniso_fit
estimates the parameters of the stationary spatial model.
Required inputs are the observed data and locations.
Optional inputs include the covariance model (exponential is the default).
Usage
Aniso_fit(
sp.SPDF = NULL,
coords = NULL,
data = NULL,
cov.model = "exponential",
mean.model = data ~ 1,
fixed.nugg2.var = NULL,
method = "reml",
fix.tausq = FALSE,
tausq = 0,
fix.kappa = FALSE,
kappa = 0.5,
local.pars.LB = NULL,
local.pars.UB = NULL,
local.ini.pars = NULL
)
Arguments
sp.SPDF |
A " |
coords |
An N x 2 matrix where each row has the two-dimensional coordinates of the N data locations. |
data |
A vector or matrix with N rows, containing the data values. Inputting a vector corresponds to a single replicate of data, while inputting a matrix corresponds to replicates. In the case of replicates, the model assumes the replicates are independent and identically distributed. |
cov.model |
A string specifying the model for the correlation
function; defaults to |
mean.model |
An object of class |
fixed.nugg2.var |
Optional; describes the variance/covariance for a fixed (second) nugget term (represents a known error term). Either a vector of length N containing a station-specific variances (implying independent error) or an NxN covariance matrix (implying dependent error). Defaults to zero. |
method |
Indicates the estimation method, either maximum likelihood
( |
fix.tausq |
Logical; indicates whether the default nugget term
(tau^2) should be fixed ( |
tausq |
Scalar; fixed value for the nugget variance (when
|
fix.kappa |
Logical; indicates if the kappa parameter should be
fixed ( |
kappa |
Scalar; value of the kappa parameter. Only used if
|
local.pars.LB , local.pars.UB |
Optional vectors of lower and upper
bounds, respectively, used by the |
local.ini.pars |
Optional vector of initial values used by the
|
Value
A list with the following components:
MLEs.save |
Table of local maximum likelihood estimates for each mixture component location. |
data |
Observed data values. |
beta.GLS |
Vector of generalized least squares estimates of beta, the mean coefficients. |
beta.cov |
Covariance matrix of the generalized least squares estimate of beta. |
Mean.coefs |
"Regression table" for the mean coefficient estimates, listing the estimate, standard error, and t-value. |
Cov.mat |
Estimated covariance matrix ( |
Cov.mat.chol |
Cholesky of |
aniso.pars |
Vector of MLEs for the anisotropy parameters lam1, lam2, eta. |
aniso.mat |
2 x 2 anisotropy matrix, calculated from
|
tausq.est |
Scalar maximum likelihood estimate of tausq (nugget variance). |
sigmasq.est |
Scalar maximum likelihood estimate of sigmasq (process variance). |
kappa.MLE |
Scalar maximum likelihood estimate for kappa (when applicable). |
fixed.nugg2.var |
N x N matrix with the fixed variance/covariance for the second (measurement error) nugget term (defaults to zero). |
cov.model |
String; the correlation model used for estimation. |
coords |
N x 2 matrix of observation locations. |
global.loglik |
Scalar value of the maximized likelihood from the global optimization (if available). |
Xmat |
Design matrix, obtained from using |
fix.kappa |
Logical, indicating if kappa was fixed ( |
kappa |
Scalar; fixed value of kappa. |
Examples
## Not run:
# Using iid standard Gaussian data
aniso.fit <- Aniso_fit( coords = cbind(runif(100), runif(100)),
data = rnorm(100) )
## End(Not run)