coloc-package | Colocalisation tests of two genetic traits |
annotate_susie | annotate susie_rss output for use with coloc_susie |
approx.bf.estimates | Internal function, approx.bf.estimates |
approx.bf.p | Internal function, approx.bf.p |
bin2lin | binomial to linear regression conversion |
check.alignment | check alignment |
check.dataset | check_dataset |
check_alignment | check alignment |
check_dataset | check_dataset |
coloc.abf | Fully Bayesian colocalisation analysis using Bayes Factors |
coloc.bf_bf | Coloc data through Bayes factors |
coloc.detail | Bayesian colocalisation analysis with detailed output |
coloc.process | Post process a coloc.details result using masking |
coloc.signals | Coloc with multiple signals per trait |
coloc.susie | run coloc using susie to detect separate signals |
coloc.susie_bf | run coloc using susie to detect separate signals |
coloc_test_data | Simulated data to use in testing and vignettes in the coloc package |
combine.abf | combine.abf |
estgeno.1.cse | estgeno1 |
estgeno.1.ctl | estgeno1 |
est_cond | generate conditional summary stats |
find.best.signal | Pick out snp with most extreme Z score |
findends | trim a dataset to central peak(s) |
findpeaks | trim a dataset to only peak(s) |
finemap.abf | Bayesian finemapping analysis |
finemap.bf | Finemap data through Bayes factors |
finemap.signals | Finemap multiple signals in a single dataset |
logbf_to_pp | logbf 2 pp |
logdiff | logdiff |
logsum | logsum |
map_cond | find the next most significant SNP, conditioning on a list of sigsnps |
map_mask | find the next most significant SNP, masking a list of sigsnps |
plot.coloc_abf | plot a coloc_abf object |
plot_dataset | plot a coloc dataset |
print.coloc_abf | print.coloc_abf |
process.dataset | process.dataset |
runsusie | Run susie on a single coloc-structured dataset |
sdY.est | Estimate trait variance, internal function |
sensitivity | Prior sensitivity for coloc |
subset_dataset | subset_dataset |
Var.data | Var.data |
Var.data.cc | Var.data |