Analyzing Data with Cellwise Outliers


[Up] [Top]

Documentation for package ‘cellWise’ version 2.5.3

Help Pages

cellHandler cellHandler algorithm
cellMap Draw a cellmap
cellMCD cellWise minimum covariance determinant estimator
checkDataSet Clean the dataset
cwLocScat Estimate location and scatter of data with cellwise weights
data_brands The brands dataset
data_clothes The clothes dataset
data_dogWalker Dog walker dataset
data_dposs DPOSS dataset
data_glass The glass dataset
data_mortality The mortality dataset
data_personality_traits The personality traits data
data_philips The philips dataset
data_VOC VOC dataset
DDC Detect Deviating Cells
DDCpredict DDCpredict
DI Detection-Imputation algorithm
estLocScale Estimate robust location and scale
generateCorMat Generates correlation matrices
generateData Generates artificial datasets with outliers
ICPCA Iterative Classical PCA
MacroPCA MacroPCA
MacroPCApredict MacroPCApredict
outlierMap Plot the outlier map.
plot_cellMCD Draw plots based on the cellwise minimum covariance determinant estimator cellMCD
transfo Robustly fit the Box-Cox or Yeo-Johnson transformation
transfo_newdata Transform variables based on the output of 'transfo'.
transfo_transformback Backtransform variables based on the output of 'transfo'.
truncPC Classical Principal Components by truncated SVD.
unpack Unpacks cellwise weighted data
weightedEM Estimates location and scatter on incomplete data with case weights
wrap Wrap the data.