| cwLocScat {cellWise} | R Documentation | 
Estimate location and scatter of data with cellwise weights
Description
Computes different estimators of multivariate location and scatter for cellwise weighted data.
Usage
cwLocScat(X, W, methods = "all", lmin = 1e-3,
                     crit = 1e-12, maxiter= 1000, 
                     initCwCov = FALSE, initEst = NULL)
Arguments
| X | An  | 
| W | An  | 
| methods | either  | 
| lmin | if not  | 
| crit | convergence criterion of successive mu and Sigma estimates in the EM algorithm. | 
| maxiter | maximal number of iteration steps in EM. | 
| initCwCov | if  | 
| initEst | if not  | 
Value
A list with components: 
- cwMean
 the explicit cellwise weighted mean.
- cwCov
 explicit cellwise weighted covariance matrix. Is asymptotically normal but not necessarily PSD (unless a nonnegative- lminwas specified).
- sqrtCov
 the cellwise weighted covariance matrix of Van Aelst et al (2011). Also asymptotically normal but not necessarily PSD (unless a nonnegative- lminwas specified).
- cwMLEmu
 the location estimate obtained by the cwMLE.
- cwMLEsigma
 the covariance matrix obtained by the cwMLE. Is PSD when the EM algorithm converges.
Author(s)
P.J. Rousseeuw
References
P.J. Rousseeuw (2022). Analyzing cellwise weighted data, ArXiv:2209.12697. (link to open access pdf)
See Also
Examples
data("data_personality_traits")
X <- data_personality_traits$X
W <- data_personality_traits$W
fit <- cwLocScat(X, W)
fit$cwMLEiter # number of iteration steps taken
round(fit$cwMLEmu, 2)
round(fit$cwMean, 2)
round(fit$cwMLEsigma, 2)
round(fit$cwCov, 2)
# For more examples, we refer to the vignette:
## Not run: 
vignette("cellwise_weights_examples")
## End(Not run)