outlierMap {cellWise} | R Documentation |
Plot the outlier map.
Description
The outlier map is a diagnostic plot for the output of MacroPCA
.
Usage
outlierMap(res,title="Robust PCA",col="black", pch=16,labelOut=TRUE,id=3,
xlim = NULL, ylim = NULL, cex = 1, cex.main=1.2, cex.lab=NULL, cex.axis=NULL)
Arguments
res |
A list containing the orthogonal distances ( |
title |
Title of the plot, default is "Robust PCA". |
col |
Colour of the points in the plot, this can be a single colour for all points or a vector or list specifying the colour for each point. The default is "black". |
pch |
Plotting characters or symbol used in the plot, see points for more details. The default is 16 which corresponds to filled circles. |
labelOut |
Logical indicating if outliers should be labelled on the plot, default is |
id |
Number of OD outliers and number of SD outliers to label on the plot, default is 3. |
xlim |
Optional argument to set the limits of the |
ylim |
Optional argument to set the limits of the |
cex |
Optional argument determining the size of the plotted points. See |
cex.main |
Optional argument determining the size of the main title. See |
cex.lab |
Optional argument determining the size of the labels. See |
cex.axis |
Optional argument determining the size of the axes. See |
Details
The outlier map contains the score distances on the x-axis and the orthogonal distances on the y-axis. To detect outliers, cut-offs for both distances are shown, see Hubert et al. (2005).
Author(s)
P.J. Rousseeuw
References
Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005). ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics, 47, 64-79.
See Also
Examples
# empty for now