Perform Nonlinear Regression Using 'optim' as the Optimization Engine


[Up] [Top]

Documentation for package ‘OptimModel’ version 2.0-1

Help Pages

beta_model Beta hook-effect model, gradient, starting values, and back-calculation functions
exp_2o_decay Five-parameter second-order exponential decay, gradient, starting values, and back-calculation functions
exp_decay Three-parameter exponential decay, gradient, starting values, and back-calculation functions
exp_decay_pl Three-parameter exponential decay with initial plateau, gradient, starting values, and back-calculation functions
f2djac Compute derivative with respect to parameters
getData Extract data object from an optim fit
getData.optim.fit Extract data object from an optim fit
get_se_func Compute standard error for a function of model parameter estimates
gompertz_model Four-parameter Gompertz model, gradient, starting values, and back-calculation functions
hill5_model Five-parameter Hill model, gradient, starting values, and back-calculation functions
hill_model Four-parameter Hill model, gradient, starting values, and back-calculation functions
hill_quad_model Five-parameter Hill model with quadratic component, gradient, starting values, and back-calculation functions
hill_switchpoint_model Five-parameter Hill model with switch point component, gradient, starting values, and back-calculation functions
linear_model Linear model, gradient, and starting values
nlogLik_cauchy Negative log-likelihood function for Cauchy regression
optim_fit Fit Model with optim
predict.optim_fit Predicted values for optim.fit objects
print.optim_fit Prints optim_fit objects
residuals.optim_fit Residuals for optim.fit objects
robust_fit Fit Model with optim
rout_fitter Fit Model with ROUT
rout_outlier_test ROUT Outlier Testing
test_fit Test Fit Parameters
weights_huber Weight functions for optim_fit
weights_tukey_bw Weight functions for optim_fit
weights_varConstPower Weight functions for optim_fit
weights_varExp Weight functions for optim_fit
weights_varIdent Weight functions for optim_fit
weights_varPower Weight functions for optim_fit