gompertz_model {OptimModel} | R Documentation |
Four-parameter Gompertz model, gradient, starting values, and back-calculation functions
Description
Four-parameter Gompertz model, gradient, starting values, and back-calculation functions.
Usage
gompertz_model(theta, x)
Arguments
theta |
Vector of four parameters: (A, B, m, offset). See details. |
x |
Vector of concentrations for the Gompertz model. |
Details
The four parameter Gompertz model is given by:
y = A + (B-A)\times\exp( -\exp( m(x-\text{offset}) ) )\text{, where}
A = \min y
(minimum y value), A+(B-A)\exp(-\exp( -m*\text{offset} ))
is the maximum y value, m is the shape parameter, and offset shifts the curve, relative to the concentration x.
Value
Let N = length(x). Then
gompertz_model(theta, x) returns a numeric vector of length N.
gompertz_model(hill_model, "gradient")(theta, x) returns an N x 4 matrix.
attr(gompertz_model, "start")(x, y) returns a numeric vector of length 4 with starting values for (A, B, m, offset).
attr(gompertz_model, "backsolve")(theta, y) returns a numeric vector of length=length(y).
Author(s)
Steven Novick
See Also
Examples
set.seed(100)
x = rep( c(0, 2^(-4:4)), each=4 )
theta = c(0, 100, log(.5), 2)
y = gompertz_model(theta, x) + rnorm( length(x), mean=0, sd=1 )
attr(gompertz_model, "gradient")(theta, x)
attr(gompertz_model, "start")(x, y)
attr(gompertz_model, "backsolve")(theta, 50)