hill5_model {OptimModel}R Documentation

Five-parameter Hill model, gradient, starting values, and back-calculation functions

Description

Five-parameter Hill model, gradient, starting values, and back-calculation functions.

Usage

 
        hill5_model(theta, x)

Arguments

theta

Vector of five parameters: (emin,emax,log.ic50,m,log.sym)(e_{\min}, e_{\max}, \text{log.ic50}, m, \text{log.sym}). See details.

x

Vector of concentrations for the five-parameter Hill model.

Details

The five parameter Hill model is given by:

y=emin+emaxe+min1+exp(mlog(x)m log.ic50))exp(log.sym)y = e_{\min} + \frac{e_{\max}-e+{\min}}{ 1 + \exp( m\log(x) - m\text{ log.ic50}) )^{\exp(\text{log.sym})}}

emin=minye_{\min} = \min y (minimum y value), emax=maxye_{\max} = \max y (maximum y value), log.ic50=log(ic50)\text{log.ic50} = \log( \text{ic50} ), m is the shape parameter, and log.sym=log(symmetry parameter)\text{log.sym} = \log( \text{symmetry parameter}).

Note: ic50 is defined such that hill5_model(theta, ic50) =emin+(emaxemin)/2exp(log.sym)= e_{\min}+(e_{\max}-e_{\min})/2^{\exp(\text{log.sym})}

Value

Let N = length(x). Then

Author(s)

Steven Novick

See Also

optim_fit, rout_fitter

Examples

set.seed(123L)
x = rep( c(0, 2^(-4:4)), each=4 )
theta = c(0, 100, log(.5), 2, log(10))
y = hill5_model(theta, x)  + rnorm( length(x), mean=0, sd=1 )
attr(hill5_model, "gradient")(theta, x)
attr(hill5_model, "start")(x, y)
attr(hill5_model, "backsolve")(theta, 50)

[Package OptimModel version 2.0-1 Index]