hill5_model {OptimModel} | R Documentation |
Five-parameter Hill model, gradient, starting values, and back-calculation functions
Description
Five-parameter Hill model, gradient, starting values, and back-calculation functions.
Usage
hill5_model(theta, x)
Arguments
theta |
Vector of five parameters: |
x |
Vector of concentrations for the five-parameter Hill model. |
Details
The five parameter Hill model is given by:
(minimum y value),
(maximum y value),
, m is the shape parameter, and
.
Note: ic50 is defined such that hill5_model(theta, ic50)
Value
Let N = length(x). Then
hill5_model(theta, x) returns a numeric vector of length N.
attr(hill5_model, "gradient")(theta, x) returns an N x 5 matrix.
attr(hill5_model, "start")(x, y) returns a numeric vector of length 5 with starting values for
.
attr(hill5_model, "backsolve")(theta, y) returns a numeric vector of length=length(y).
Author(s)
Steven Novick
See Also
Examples
set.seed(123L)
x = rep( c(0, 2^(-4:4)), each=4 )
theta = c(0, 100, log(.5), 2, log(10))
y = hill5_model(theta, x) + rnorm( length(x), mean=0, sd=1 )
attr(hill5_model, "gradient")(theta, x)
attr(hill5_model, "start")(x, y)
attr(hill5_model, "backsolve")(theta, 50)
[Package OptimModel version 2.0-1 Index]