predict.optim_fit {OptimModel} | R Documentation |
Predicted values for optim.fit objects
Description
Provides predicted values, standard errors, confidence intervals and prediction intervals for optim_fit
objects.
Usage
## S3 method for class 'optim_fit'
predict(object, x, se.fit=FALSE,
interval=c("none", "confidence", "prediction"), K = 1, level = 0.95,...)
Arguments
object |
An object resulting from |
x |
If supplied, a vector, data.frame, or matrix of Explanatory variables. |
se.fit |
Logical. Should standard errors be returned? Requires that 'x' is supplied. |
interval |
If equal to 'confidence', returns a 100*level% confidence interval for the mean response. If equal to 'prediction', returns a 100*level% prediction interval for the mean of the next K observations. Requires that 'x' is supplied. |
K |
Only used for prediction interval. Number of observations in the mean for the prediction interval. |
level |
Confidence/prediction interval level. |
... |
mop up additional arguments. |
Value
Returns a vector (if interval='none'). Otherwise returns a data.frame with possible columns 'x', 'y.hat', 'se.fit', 'lower', and 'upper'.
Author(s)
Steven Novick
See Also
Examples
set.seed(123L)
x = rep( c(0, 2^(-4:4)), each=4 )
theta = c(0, 100, log(.5), 2)
y1 = hill_model(theta, x) + rnorm( length(x), sd=2 )
fit1=optim_fit(theta, hill_model, x=x, y=y1)
fitted(fit1)
predict(fit1)
predict(fit1, x=x)
predict(fit1, x=seq(0, 1, by=.1), se.fit=TRUE)
predict(fit1, x=seq(0, 1, by=.1), interval="conf")
predict(fit1, x=seq(0, 1, by=.1), interval="pred")