Synthesizing Causal Evidence in a Distributed Research Network


[Up] [Top]

Documentation for package ‘EvidenceSynthesis’ version 0.3.0

Help Pages

approximateHierarchicalNormalPosterior Approximate Bayesian posterior for hierarchical Normal model
approximateLikelihood Approximate a likelihood function
approximateSimplePosterior Approximate simple Bayesian posterior
computeBayesianMetaAnalysis Compute a Bayesian random-effects meta-analysis
computeConfidenceInterval Compute the point estimate and confidence interval given a likelihood function approximation
computeFixedEffectMetaAnalysis Compute a fixed-effect meta-analysis
createSimulationSettings Create simulation settings
customFunction A custom function to approximate a log likelihood function
plotCovariateBalances Plot covariate balances
plotEmpiricalNulls Plot empirical null distributions
plotLikelihoodFit Plot the likelihood approximation
plotMcmcTrace Plot MCMC trace
plotMetaAnalysisForest Create a forest plot
plotPerDbMcmcTrace Plot MCMC trace for individual databases
plotPerDbPosterior Plot posterior density per database
plotPosterior Plot posterior density
plotPreparedPs Plot the propensity score distribution
preparePsPlot Prepare to plot the propensity score distribution
simulatePopulations Simulate survival data for multiple databases
skewNormal The skew normal function to approximate a log likelihood function
supportsJava8 Determine if Java virtual machine supports Java