computeBayesianMetaAnalysis {EvidenceSynthesis}R Documentation

Compute a Bayesian random-effects meta-analysis

Description

Compute a Bayesian meta-analysis using the Markov chain Monte Carlo (MCMC) engine BEAST. A normal and half-normal prior are used for the mu and tau parameters, respectively, with standard deviations as defined by the priorSd argument.

Usage

computeBayesianMetaAnalysis(
  data,
  chainLength = 1100000,
  burnIn = 1e+05,
  subSampleFrequency = 100,
  priorSd = c(2, 0.5),
  alpha = 0.05,
  seed = 1,
  robust = FALSE
)

Arguments

data

A data frame containing either normal, skew-normal, custom parametric, or grid likelihood data, with one row per database.

chainLength

Number of MCMC iterations.

burnIn

Number of MCMC iterations to consider as burn in.

subSampleFrequency

Subsample frequency for the MCMC.

priorSd

A two-dimensional vector with the standard deviation of the prior for mu and tau, respectively.

alpha

The alpha (expected type I error) used for the credible intervals.

seed

The seed for the random number generator.

robust

Whether or not to use a t-distribution model (default: FALSE)

Value

A data frame with the point estimates and 95% credible intervals for the mu and tau parameters (the mean and standard deviation of the distribution from which the per-site effect sizes are drawn). Attributes of the data frame contain the MCMC trace and the detected approximation type.

See Also

approximateLikelihood, computeFixedEffectMetaAnalysis

Examples

# Simulate some data for this example:
populations <- simulatePopulations()

# Fit a Cox regression at each data site, and approximate likelihood function:
fitModelInDatabase <- function(population) {
  cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
                                            data = population,
                                            modelType = "cox")
  cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
  approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "custom")
  return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
approximations <- do.call("rbind", approximations)

# At study coordinating center, perform meta-analysis using per-site approximations:
estimate <- computeBayesianMetaAnalysis(approximations)
estimate

# (Estimates in this example will vary due to the random simulation)


[Package EvidenceSynthesis version 0.3.0 Index]