computeFixedEffectMetaAnalysis {EvidenceSynthesis} | R Documentation |
Compute a fixed-effect meta-analysis
Description
Compute a fixed-effect meta-analysis using a choice of various likelihood approximations.
Usage
computeFixedEffectMetaAnalysis(data, alpha = 0.05)
Arguments
data |
A data frame containing either normal, skew-normal, custom parametric, or grid likelihood data. One row per database. |
alpha |
The alpha (expected type I error) used for the confidence intervals. |
Value
The meta-analytic estimate, expressed as the point estimate hazard ratio (rr), its 95 percent confidence interval (lb, ub), as well as the log of the point estimate (logRr), and the standard error (seLogRr).
See Also
approximateLikelihood, computeBayesianMetaAnalysis
Examples
# Simulate some data for this example:
populations <- simulatePopulations()
# Fit a Cox regression at each data site, and approximate likelihood function:
fitModelInDatabase <- function(population) {
cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox"
)
cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "custom")
return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
approximations <- do.call("rbind", approximations)
# At study coordinating center, perform meta-analysis using per-site approximations:
computeFixedEffectMetaAnalysis(approximations)
# (Estimates in this example will vary due to the random simulation)
[Package EvidenceSynthesis version 0.5.0 Index]