CausalQueries-package | 'CausalQueries' |
all_data_types | All data types |
collapse_data | Make compact data with data strategies |
complements | Make statement for complements |
data_type_names | Data type names |
decreasing | Make monotonicity statement (negative) |
democracy_data | Development and Democratization: Data for replication of analysis in *Integrated Inferences* |
draw_causal_type | Draw a single causal type given a parameter vector |
expand_data | Expand compact data object to data frame |
expand_wildcard | Expand wildcard |
get_ambiguities_matrix | Get ambiguities matrix |
get_causal_types | Get causal types |
get_event_prob | Draw event probabilities |
get_nodal_types | Get list of types for nodes in a DAG |
get_parameters | Setting parameters |
get_parameter_matrix | Get parameter matrix |
get_parameter_names | Get parameter names |
get_param_dist | Get a distribution of model parameters |
get_parents | Get list of parents of all nodes in a model |
get_parmap | Get parmap: a matrix mapping from parameters to data types |
get_priors | Setting priors |
get_prior_distribution | Get a prior distribution from priors |
get_query_types | Look up query types |
get_type_prob | Get type probabilities |
get_type_prob_c | generates one draw from type probability distribution for each type in P |
get_type_prob_multiple | Draw matrix of type probabilities, before or after estimation |
get_type_prob_multiple_c | generates n draws from type probability distribution for each type in P |
increasing | Make monotonicity statement (positive) |
institutions_data | Institutions and growth: Data for replication of analysis in *Integrated Inferences* |
interacts | Make statement for any interaction |
interpret_type | Interpret or find position in nodal type |
lipids_data | Lipids: Data for Chickering and Pearl replication |
make_data | Make data |
make_events | Make data in compact form |
make_model | Make a model |
make_parameters | Setting parameters |
make_parameter_matrix | Make parameter matrix |
make_parmap | Make parmap: a matrix mapping from parameters to data types |
make_priors | Setting priors |
make_prior_distribution | Make a prior distribution from priors |
non_decreasing | Make monotonicity statement (non negative) |
non_increasing | Make monotonicity statement (non positive) |
observe_data | Observe data, given a strategy |
parameter_setting | Setting parameters |
prior_setting | Setting priors |
query_distribution | Calculate query distribution |
query_model | Generate estimands dataframe |
realise_outcomes | Realise outcomes |
set_ambiguities_matrix | Set ambiguity matrix |
set_confound | Set confound |
set_parameters | Setting parameters |
set_parameter_matrix | Set parameter matrix |
set_parmap | Set parmap: a matrix mapping from parameters to data types |
set_priors | Setting priors |
set_prior_distribution | Add prior distribution draws |
set_restrictions | Restrict a model |
simulate_data | simulate_data is an alias for make_data |
strategy_statements | Generate strategy statements given data |
substitutes | Make statement for substitutes |
te | Make treatment effect statement (positive) |
update_model | Fit causal model using 'stan' |