query_model {CausalQueries} | R Documentation |
Generate estimands dataframe
Description
Calculated from a parameter vector, from a prior or from a posterior distribution.
Usage
query_model(
model,
queries = NULL,
given = NULL,
using = list("parameters"),
parameters = NULL,
stats = NULL,
n_draws = 4000,
expand_grid = FALSE,
case_level = FALSE,
query = NULL,
cred = 95
)
Arguments
model |
A |
queries |
A vector of strings or list of strings specifying queries on potential outcomes such as "Y[X=1] - Y[X=0]". |
given |
A vector or list of strings specifying givens. A given is a quoted expression that evaluates to a logical statement. Allows estimand to be conditioned on *observational* (or counterfactual) distribution. |
using |
A vector or list of strings. Whether to use priors, posteriors or parameters. |
parameters |
A vector of real numbers in [0,1]. Values of parameters to
specify (optional). By default, parameters is drawn from
|
stats |
Functions to be applied to estimand distribution. If NULL, defaults to mean, standard deviation, and 95% confidence interval. Functions should return a single numeric value. |
n_draws |
An integer. Number of draws. |
expand_grid |
Logical. If |
case_level |
Logical. If TRUE estimates the probability of the query for a case. |
query |
alias for queries |
cred |
size of the credible interval ranging between 0 and 100 |
Details
Queries can condition on observed or counterfactual quantities.
Nested or "complex" counterfactual queries of the form
Y[X=1, M[X=0]]
are allowed.
Value
A DataFrame
with columns Model, Query, Given and Using
defined by corresponding input values. Further columns are generated
as specified in stats
.
Examples
model <- make_model("X -> Y")
query_model(model, "Y[X=1] - Y[X = 0]", using = "priors")
query_model(model, "Y[X=1] > Y[X = 0]", using = "parameters")
query_model(model, "Y[X=1] > Y[X = 0]", using = c("priors", "parameters"))
# `expand_grid= TRUE` requests the Cartesian product of arguments
models <- list(
M1 = make_model("X -> Y"),
M2 = make_model("X -> Y") |>
set_restrictions("Y[X=1] < Y[X=0]")
)
query_model(
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0]"),
given = c(TRUE, "Y==1 & X==1"),
using = c("parameters", "priors"),
expand_grid = FALSE)
query_model(
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0]"),
given = c(TRUE, "Y==1 & X==1"),
using = c("parameters", "priors"),
expand_grid = TRUE)
# An example of a custom statistic: uncertainty of token causation
f <- function(x) mean(x)*(1-mean(x))
query_model(
model,
using = list( "parameters", "priors"),
query = "Y[X=1] > Y[X=0]",
stats = c(mean = mean, sd = sd, token_variance = f))