set_confound {CausalQueries} | R Documentation |
Set confound
Description
Adjust parameter matrix to allow confounding.
Usage
set_confound(model, confound = NULL)
Arguments
model |
A |
confound |
A |
Details
Confounding between X and Y arises when the nodal types for X and Y are not independently distributed. In the X -> Y graph, for instance, there are 2 nodal types for X and 4 for Y. There are thus 8 joint nodal types:
| | t^X | | | |-----|----|--------------------|--------------------|-----------| | | | 0 | 1 | Sum | |-----|----|--------------------|--------------------|-----------| | t^Y | 00 | Pr(t^X=0 & t^Y=00) | Pr(t^X=1 & t^Y=00) | Pr(t^Y=00)| | | 10 | . | . | . | | | 01 | . | . | . | | | 11 | . | . | . | |-----|----|--------------------|--------------------|-----------| | |Sum | Pr(t^X=0) | Pr(t^X=1) | 1 |
This table has 8 interior elements and so an unconstrained joint distribution would have 7 degrees of freedom. A no confounding assumption means that Pr(t^X | t^Y) = Pr(t^X), or Pr(t^X, t^Y) = Pr(t^X)Pr(t^Y). In this case there would be 3 degrees of freedom for Y and 1 for X, totaling 4 rather than 7.
set_confound
lets you relax this assumption by increasing the
number of parameters characterizing the joint distribution. Using the fact
that P(A,B) = P(A)P(B|A) new parameters are introduced to capture P(B|A=a)
rather than simply P(B). For instance here two parameters
(and one degree of freedom) govern the distribution of types X and four
parameters (with 3 degrees of freedom) govern the types for Y given the
type of X for a total of 1+3+3 = 7 degrees of freedom.
Value
An object of class causal_model
with updated parameters_df
and parameter matrix.
Examples
make_model('X -> Y; X <-> Y') |>
grab("parameters")
make_model('X -> M -> Y; X <-> Y') |>
grab("parameters")
model <- make_model('X -> M -> Y; X <-> Y; M <-> Y')
model$parameters_df
# Example where set_confound is implemented after restrictions
make_model("A -> B -> C") |>
set_restrictions(increasing("A", "B")) |>
set_confound("B <-> C") |>
grab("parameters")
# Example where two parents are confounded
make_model('A -> B <- C; A <-> C') |>
set_parameters(node = "C", c(0.05, .95, .95, 0.05)) |>
make_data(n = 50) |>
cor()
# Example with two confounds, added sequentially
model <- make_model('A -> B -> C') |>
set_confound(list("A <-> B", "B <-> C"))
model$statement
# plot(model)