parameter_setting {CausalQueries} | R Documentation |
Setting parameters
Description
Functionality for altering parameters:
A vector of 'true' parameters; possibly drawn from prior or posterior.
Add a true parameter vector to a model. Parameters can be created using
arguments passed to make_parameters
and
make_priors
.
Extracts parameters as a named vector
Usage
make_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = TRUE,
normalize = TRUE,
...
)
set_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = FALSE,
...
)
get_parameters(model, param_type = NULL)
Arguments
model |
A |
parameters |
A vector of real numbers in [0,1]. Values of parameters to
specify (optional). By default, parameters is drawn from
|
param_type |
A character. String specifying type of parameters to make
"flat", "prior_mean", "posterior_mean", "prior_draw",
"posterior_draw", "define". With param_type set to |
warning |
Logical. Whether to warn about parameter renormalization. |
normalize |
Logical. If parameter given for a subset of a family the residual elements are normalized so that parameters in param_set sum to 1 and provided params are unaltered. |
... |
Options passed onto |
Value
A vector of draws from the prior or distribution of parameters
An object of class causal_model
. It essentially returns a
list containing the elements comprising a model
(e.g. 'statement', 'nodal_types' and 'DAG') with true vector of
parameters attached to it.
A vector of draws from the prior or distribution of parameters
Examples
# make_parameters examples:
# Simple examples
model <- make_model('X -> Y')
data <- make_data(model, n = 2)
model <- update_model(model, data)
make_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))
make_parameters(model, param_type = 'flat')
make_parameters(model, param_type = 'prior_draw')
make_parameters(model, param_type = 'prior_mean')
make_parameters(model, param_type = 'posterior_draw')
make_parameters(model, param_type = 'posterior_mean')
#altering values using \code{alter_at}
make_model("X -> Y") %>% make_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01')")
#altering values using \code{param_names}
make_model("X -> Y") %>% make_parameters(parameters = c(0.5,0.25),
param_names = c("Y.10","Y.01"))
#altering values using \code{statement}
make_model("X -> Y") %>% make_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")
#altering values using a combination of other arguments
make_model("X -> Y") %>% make_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))
# Normalize renormalizes values not set so that value set is not renomalized
make_parameters(make_model('X -> Y'),
statement = 'Y[X=1]>Y[X=0]', parameters = .5)
make_parameters(make_model('X -> Y'),
statement = 'Y[X=1]>Y[X=0]', parameters = .5,
normalize = FALSE)
# set_parameters examples:
make_model('X->Y') %>% set_parameters(1:6) %>% grab("parameters")
# Simple examples
model <- make_model('X -> Y')
data <- make_data(model, n = 2)
model <- update_model(model, data)
set_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))
set_parameters(model, param_type = 'flat')
set_parameters(model, param_type = 'prior_draw')
set_parameters(model, param_type = 'prior_mean')
set_parameters(model, param_type = 'posterior_draw')
set_parameters(model, param_type = 'posterior_mean')
#altering values using \code{alter_at}
make_model("X -> Y") %>% set_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01')")
#altering values using \code{param_names}
make_model("X -> Y") %>% set_parameters(parameters = c(0.5,0.25),
param_names = c("Y.10","Y.01"))
#altering values using \code{statement}
make_model("X -> Y") %>% set_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")
#altering values using a combination of other arguments
make_model("X -> Y") %>% set_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))