Bayesian Structure and Causal Learning of Gaussian Directed Graphs


[Up] [Top]

Documentation for package ‘BCDAG’ version 1.1.1

Help Pages

as_graphNEL Transform adjacency matrix into graphNEL object
causaleffect Compute causal effects between variables
confint.bcdagCE Credible Intervals for bcdagCE Object
get_causaleffect Estimate total causal effects from the MCMC output
get_diagnostics MCMC diagnostics
get_edgeprobs Compute posterior probabilities of edge inclusion from the MCMC output
get_MAPdag Compute the maximum a posteriori DAG model from the MCMC output
get_MPMdag Compute the median probability DAG model from the MCMC output
get_neighboringDAGs Enumerate all neighbors of a DAG
learn_DAG MCMC scheme for Gaussian DAG posterior inference
leukemia Protein levels for 68 diagnosed AML patients of subtype M2
plot.bcdag bcdag object plot
plot.bcdagCE bcdagCE object plot
print.bcdag bcdag object print
print.bcdagCE bcdagCE object print
rDAG Generate a Directed Acyclic Graph (DAG) randomly
rDAGWishart Random samples from a compatible DAG-Wishart distribution
summary.bcdag bcdag object summaries
summary.bcdagCE bcdagCE object summary