add_baseline |
Internal Function: Add baselines after second-step logistic regression (part of AutoScore Module 3) |
assign_score |
Internal Function: Automatically assign scores to each subjects given new data set and scoring table (Used for intermediate and final evaluation) |
AutoScore_fine_tuning |
AutoScore STEP(iv): Fine-tune the score by revising cut_vec with domain knowledge (AutoScore Module 5) |
AutoScore_fine_tuning_Ordinal |
AutoScore STEP(iv) for ordinal outcomes: Fine-tune the score by revising 'cut_vec' with domain knowledge (AutoScore Module 5) |
AutoScore_fine_tuning_Survival |
AutoScore STEP(iv) for survival outcomes: Fine-tune the score by revising cut_vec with domain knowledge (AutoScore Module 5) |
AutoScore_parsimony |
AutoScore STEP(ii): Select the best model with parsimony plot (AutoScore Modules 2+3+4) |
AutoScore_parsimony_Ordinal |
AutoScore STEP(ii) for ordinal outcomes: Select the best model with parsimony plot (AutoScore Modules 2+3+4) |
AutoScore_parsimony_Survival |
AutoScore STEP(ii) for survival outcomes: Select the best model with parsimony plot (AutoScore Modules 2+3+4) |
AutoScore_rank |
AutoScore STEP(i): Rank variables with machine learning (AutoScore Module 1) |
AutoScore_rank_Ordinal |
AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1) |
AutoScore_rank_Survival |
AutoScore STEP (1) for survival outcomes: Generate variable ranking List by machine learning (Random Survival Forest) (AutoScore Module 1) |
AutoScore_testing |
AutoScore STEP(v): Evaluate the final score with ROC analysis (AutoScore Module 6) |
AutoScore_testing_Ordinal |
AutoScore STEP(v) for ordinal outcomes: Evaluate the final score (AutoScore Module 6) |
AutoScore_testing_Survival |
AutoScore STEP(v) for survival outcomes: Evaluate the final score with ROC analysis (AutoScore Module 6) |
AutoScore_weighting |
AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3) |
AutoScore_weighting_Ordinal |
AutoScore STEP(iii) for ordinal outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3) |
AutoScore_weighting_Survival |
AutoScore STEP(iii) for survival outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3) |
change_reference |
Internal Function: Change Reference category after first-step logistic regression (part of AutoScore Module 3) |
check_data |
AutoScore function for datasets with binary outcomes: Check whether the input dataset fulfill the requirement of the AutoScore |
check_data_ordinal |
AutoScore function for ordinal outcomes: Check whether the input dataset fulfil the requirement of the AutoScore |
check_data_survival |
AutoScore function for survival data: Check whether the input dataset fulfill the requirement of the AutoScore |
check_link |
Internal function: Check link function |
check_predictor |
Internal function: Check predictors |
compute_auc_val |
Internal function: Compute AUC based on validation set for plotting parsimony (AutoScore Module 4) |
compute_auc_val_ord |
Internal function: Compute mean AUC for ordinal outcomes based on validation set for plotting parsimony |
compute_auc_val_survival |
Internal function for survival outcomes: Compute AUC based on validation set for plotting parsimony |
compute_descriptive_table |
AutoScore function: Descriptive Analysis |
compute_final_score_ord |
Internal function: Compute risk scores for ordinal data given variables selected, cut-off values and scoring table |
compute_mauc_ord |
Internal function: Compute mAUC for ordinal predictions |
compute_multi_variable_table |
AutoScore function: Multivariate Analysis |
compute_multi_variable_table_ordinal |
AutoScore-Ordinal function: Multivariate Analysis |
compute_multi_variable_table_survival |
AutoScore function for survival outcomes: Multivariate Analysis |
compute_prob_observed |
Internal function: Based on given labels and scores, compute proportion of subjects observed in each outcome category in given score intervals. |
compute_prob_predicted |
Internal function: Based on given labels and scores, compute average predicted risks in given score intervals. |
compute_score_table |
Internal function: Compute scoring table based on training dataset (AutoScore Module 3) |
compute_score_table_ord |
Internal function: Compute scoring table for ordinal outcomes based on training dataset |
compute_score_table_survival |
Internal function: Compute scoring table for survival outcomes based on training dataset |
compute_uni_variable_table |
AutoScore function: Univariable Analysis |
compute_uni_variable_table_ordinal |
AutoScore-Ordinal function: Univariable Analysis |
compute_uni_variable_table_survival |
AutoScore function for survival outcomes: Univariate Analysis |
conversion_table |
AutoScore function: Print conversion table based on final performance evaluation |
conversion_table_ordinal |
AutoScore function: Print conversion table for ordinal outcomes to map score to risk |
conversion_table_survival |
AutoScore function for survival outcomes: Print conversion table |
estimate_p_mat |
Internal function: generate probability matrix for ordinal outcomes given thresholds, linear predictor and link function |
evaluate_model_ord |
Internal function: Evaluate model performance on ordinal data |
eva_performance_iauc |
Internal function survival outcome: Calculate iAUC for validation set |
extract_or_ci_ord |
Extract OR, CI and p-value from a proportional odds model |
find_one_inds |
Internal function: Find column indices in design matrix that should be 1 |
find_possible_scores |
Internal function: Compute all scores attainable. |
get_cut_vec |
Internal function: Calculate cut_vec from the training set (AutoScore Module 2) |
group_score |
Internal function: Group scores based on given score breaks, and use friendly names for first and last intervals. |
induce_informative_missing |
Internal function: induce informative missing to sample data in the package to demonstrate how AutoScore handles missing as a separate category |
induce_median_missing |
Internal function: induce informative missing in a single variable |
inv_cloglog |
Internal function: Inverse cloglog link |
inv_logit |
Internal function: Inverse logit link |
inv_probit |
Internal function: Inverse probit link |
make_design_mat |
Internal function: Based on 'find_one_inds', make a design matrix to compute all scores attainable. |
plot_auc |
Internal function: Make parsimony plot |
plot_importance |
Internal Function: Print plotted variable importance |
plot_predicted_risk |
AutoScore function for binary and ordinal outcomes: Plot predicted risk |
plot_roc_curve |
Internal Function: Plotting ROC curve |
plot_survival_km |
AutoScore function for survival outcomes: Print scoring performance (KM curve) |
print_performance_ci_survival |
AutoScore function for survival outcomes: Print predictive performance with confidence intervals |
print_performance_ordinal |
AutoScore function for ordinal outcomes: Print predictive performance |
print_performance_survival |
AutoScore function for survival outcomes: Print predictive performance |
print_roc_performance |
AutoScore function: Print receiver operating characteristic (ROC) performance |
print_scoring_table |
AutoScore Function: Print scoring tables for visualization |
sample_data |
20000 simulated ICU admission data, with the same distribution as the data in the MIMIC-III ICU database |
sample_data_ordinal |
Simulated ED data with ordinal outcome |
sample_data_ordinal_small |
Simulated ED data with ordinal outcome (small sample size) |
sample_data_small |
1000 simulated ICU admission data, with the same distribution as the data in the MIMIC-III ICU database |
sample_data_survival |
20000 simulated MIMIC sample data with survival outcomes |
sample_data_survival_small |
1000 simulated MIMIC sample data with survival outcomes |
sample_data_with_missing |
20000 simulated ICU admission data with missing values |
split_data |
AutoScore Function: Automatically splitting dataset to train, validation and test set, possibly stratified by label |
transform_df_fixed |
Internal function: Categorizing continuous variables based on cut_vec (AutoScore Module 2) |