AutoScore_rank_Ordinal {AutoScore} | R Documentation |
AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1)
Description
AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1)
Usage
AutoScore_rank_Ordinal(train_set, ntree = 100)
Arguments
train_set |
A processed |
ntree |
Number of trees in the random forest (Default: 100). |
Details
The first step in the AutoScore framework is variable ranking. We use random forest (RF) for multiclass classification to identify the top-ranking predictors for subsequent score generation. This step corresponds to Module 1 in the AutoScore-Ordinal paper.
Value
Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)
References
Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for generating scoring models for ordinal outcomes, arXiv:2202.08407
See Also
AutoScore_parsimony_Ordinal
,
AutoScore_weighting_Ordinal
,
AutoScore_fine_tuning_Ordinal
,
AutoScore_testing_Ordinal
.
Examples
## Not run:
# see AutoScore-Ordinal Guidebook for the whole 5-step workflow
data("sample_data_ordinal") # Output is named `label`
ranking <- AutoScore_rank_ordinal(sample_data_ordinal, ntree = 50)
## End(Not run)