AutoScore_rank_Ordinal {AutoScore}R Documentation

AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1)

Description

AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1)

Usage

AutoScore_rank_Ordinal(train_set, ntree = 100)

Arguments

train_set

A processed data.frame that contains data to be analyzed, for training.

ntree

Number of trees in the random forest (Default: 100).

Details

The first step in the AutoScore framework is variable ranking. We use random forest (RF) for multiclass classification to identify the top-ranking predictors for subsequent score generation. This step corresponds to Module 1 in the AutoScore-Ordinal paper.

Value

Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)

References

See Also

AutoScore_parsimony_Ordinal, AutoScore_weighting_Ordinal, AutoScore_fine_tuning_Ordinal, AutoScore_testing_Ordinal.

Examples

## Not run: 
# see AutoScore-Ordinal Guidebook for the whole 5-step workflow
data("sample_data_ordinal") # Output is named `label`
ranking <- AutoScore_rank_ordinal(sample_data_ordinal, ntree = 50)

## End(Not run)

[Package AutoScore version 1.0.0 Index]