compute_auc_val_ord {AutoScore} | R Documentation |
Compute mean AUC based on validation set for plotting parsimony
compute_auc_val_ord(
train_set_1,
validation_set_1,
variable_list,
link,
categorize,
quantiles,
max_cluster,
max_score
)
train_set_1 |
Processed training set |
validation_set_1 |
Processed validation set |
variable_list |
List of included variables |
link |
The link function used to model ordinal outcomes. Default is
|
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. Available if |
max_cluster |
The max number of cluster (Default: 5). Available if |
max_score |
Maximum total score |
A list of mAUC for parsimony plot