AutoScore_weighting_Ordinal {AutoScore} | R Documentation |
AutoScore STEP(iii) for ordinal outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)
Description
AutoScore STEP(iii) for ordinal outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)
Usage
AutoScore_weighting_Ordinal(
train_set,
validation_set,
final_variables,
link = "logit",
max_score = 100,
categorize = "quantile",
quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),
max_cluster = 5,
n_boot = 100
)
Arguments
train_set |
A processed |
validation_set |
A processed |
final_variables |
A vector containing the list of selected variables,
selected from Step(ii) |
link |
The link function used to model ordinal outcomes. Default is
|
max_score |
Maximum total score (Default: 100). |
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile"). |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if |
max_cluster |
The max number of cluster (Default: 5). Available if |
n_boot |
Number of bootstrap cycles to compute 95% CI for performance metrics. |
Value
Generated cut_vec
for downstream fine-tuning process STEP(iv)
AutoScore_fine_tuning_Ordinal
.
References
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for generating scoring models for ordinal outcomes, arXiv:2202.08407
See Also
AutoScore_rank_Ordinal
,
AutoScore_parsimony_Ordinal
,
AutoScore_fine_tuning_Ordinal
,
AutoScore_testing_Ordinal
.
Examples
## Not run:
data("sample_data_ordinal") # Output is named `label`
out_split <- split_data(data = sample_data_ordinal, ratio = c(0.7, 0.1, 0.2))
train_set <- out_split$train_set
validation_set <- out_split$validation_set
ranking <- AutoScore_rank_Ordinal(train_set, ntree=100)
num_var <- 6
final_variables <- names(ranking[1:num_var])
cut_vec <- AutoScore_weighting_Ordinal(
train_set = train_set, validation_set = validation_set,
final_variables = final_variables, max_score = 100,
categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)
)
## End(Not run)