stan_multinomPois {ubms}R Documentation

Fit the Multinomial-Poisson Mixture Model

Description

This function fits the multinomial-Poisson mixture model, useful for data collected via survey methods such as removal or double observer sampling.

Usage

stan_multinomPois(
  formula,
  data,
  prior_intercept_state = normal(0, 5),
  prior_coef_state = normal(0, 2.5),
  prior_intercept_det = logistic(0, 1),
  prior_coef_det = logistic(0, 1),
  prior_sigma = gamma(1, 1),
  log_lik = TRUE,
  ...
)

Arguments

formula

Double right-hand side formula describing covariates of detection and abundance in that order

data

A unmarkedFrameMPois object

prior_intercept_state

Prior distribution for the intercept of the state (abundance) model; see ?priors for options

prior_coef_state

Prior distribution for the regression coefficients of the state model

prior_intercept_det

Prior distribution for the intercept of the detection probability model

prior_coef_det

Prior distribution for the regression coefficients of the detection model

prior_sigma

Prior distribution on random effect standard deviations

log_lik

If TRUE, Stan will save pointwise log-likelihood values in the output. This can greatly increase the size of the model. If FALSE, the values are calculated post-hoc from the posteriors

...

Arguments passed to the stan call, such as number of chains chains or iterations iter

Value

ubmsFitMultinomPois object describing the model fit.

See Also

multinomPois, unmarkedFrameMPois

Examples


data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
                                siteCovs=ovendata.list$covariates,
                                type="removal")

oven_fit <- stan_multinomPois(~1~scale(ufc), ovenFrame, chains=3, iter=300)



[Package ubms version 1.2.6 Index]