stan_multinomPois {ubms} | R Documentation |
Fit the Multinomial-Poisson Mixture Model
Description
This function fits the multinomial-Poisson mixture model, useful for data collected via survey methods such as removal or double observer sampling.
Usage
stan_multinomPois(
formula,
data,
prior_intercept_state = normal(0, 5),
prior_coef_state = normal(0, 2.5),
prior_intercept_det = logistic(0, 1),
prior_coef_det = logistic(0, 1),
prior_sigma = gamma(1, 1),
log_lik = TRUE,
...
)
Arguments
formula |
Double right-hand side formula describing covariates of detection and abundance in that order |
data |
A |
prior_intercept_state |
Prior distribution for the intercept of the
state (abundance) model; see |
prior_coef_state |
Prior distribution for the regression coefficients of the state model |
prior_intercept_det |
Prior distribution for the intercept of the detection probability model |
prior_coef_det |
Prior distribution for the regression coefficients of the detection model |
prior_sigma |
Prior distribution on random effect standard deviations |
log_lik |
If |
... |
Arguments passed to the |
Value
ubmsFitMultinomPois
object describing the model fit.
See Also
multinomPois
, unmarkedFrameMPois
Examples
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=ovendata.list$covariates,
type="removal")
oven_fit <- stan_multinomPois(~1~scale(ufc), ovenFrame, chains=3, iter=300)