unmarkedFrameMPois {unmarked} | R Documentation |
Organize data for the multinomial-Poisson mixture model of Royle (2004) fit by multinomPois
Description
Organizes count data along with the covariates.
This S4 class is required by the data argument of
multinomPois
Usage
unmarkedFrameMPois(y, siteCovs=NULL, obsCovs=NULL, type, obsToY,
mapInfo, piFun)
Arguments
y |
An RxJ matrix of count data, where R is the number of sites (transects) and J is the maximum number of observations per site. |
siteCovs |
A |
obsCovs |
Either a named list of RxJ |
type |
Either "removal" for removal sampling, "double" for standard
double observer sampling, or "depDouble" for dependent double observer
sampling. If this argument not specified, the user must
provide an |
obsToY |
A matrix describing the relationship between |
mapInfo |
Currently ignored |
piFun |
Function used to compute the multinomial cell probabilities
from a matrix of detection probabilities. This is created automatically
if |
Details
unmarkedFrameMPois is the S4 class that holds data to be passed
to the multinomPois
model-fitting function.
Value
an object of class unmarkedFrameMPois
References
Royle, J. A. (2004). Generalized estimators of avian abundance from count survey data. Animal Biodiversity and Conservation, 27(1), 375-386.
See Also
unmarkedFrame-class
, unmarkedFrame
,
multinomPois
, piFuns
Examples
# Fake doulbe observer data
R <- 4 # number of sites
J <- 2 # number of observers
y <- matrix(c(
1,0,3,
0,0,0,
2,0,1,
0,0,2), nrow=R, ncol=J+1, byrow=TRUE)
y
site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs
obs.covs <- list(
x3 = matrix(c(
-1,0,
-2,0,
-3,1,
0,0),
nrow=R, ncol=J, byrow=TRUE),
x4 = matrix(c(
'a','b',
'a','b',
'a','b',
'a','b'),
nrow=R, ncol=J, byrow=TRUE))
obs.covs
# Create unmarkedFrame
umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,
type="double")
# The above is the same as:
o2y <- matrix(1, 2, 3)
pifun <- function(p)
{
M <- nrow(p)
pi <- matrix(NA, M, 3)
pi[, 1] <- p[, 1] * (1 - p[, 2])
pi[, 2] <- p[, 2] * (1 - p[, 1])
pi[, 3] <- p[, 1] * p[, 2]
return(pi)
}
umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,
obsToY=o2y, piFun="pifun")
# Fit a model
fm <- multinomPois(~1 ~1, umf)