Structurally Guided Sampling


[Up] [Top]

Documentation for package ‘sgsR’ version 1.4.5

Help Pages

calculate_allocation Sample allocation type and count
calculate_coobs coobs algorithm sampling
calculate_distance Distance to access layer
calculate_lhsOpt Analyze optimal Latin hypercube sample number
calculate_pcomp Raster principal components
calculate_pop Population descriptors
calculate_representation Compare sample representation within sraster strata
calculate_sampsize Sample size determination
extract_metrics Extract metrics
extract_strata Extract strata
sample_ahels Adapted Hypercube Evaluation of a Legacy Sample (ahels)
sample_balanced Balanced sampling
sample_clhs Conditioned Latin Hypercube Sampling
sample_existing Sample existing
sample_nc Nearest centroid (NC) sampling
sample_srs Simple random sampling
sample_strat Stratified sampling
sample_systematic Systematic sampling
sample_sys_strat Systematic stratified sampling
strat_breaks Breaks stratification
strat_kmeans k-means stratification
strat_map Map a raster stack of a list of rasters
strat_poly Stratify using polygons
strat_quantiles Quantiles stratification