| sample_existing {sgsR} | R Documentation | 
Sample existing
Description
Sub-sample an existing sample. Four sampling methods are available:
clhs, balanced, srs and strat.
Usage
sample_existing(
  existing,
  nSamp,
  raster = NULL,
  type = "clhs",
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE,
  ...
)
Arguments
existing | 
 sf 'POINT'. Existing plot network.  | 
nSamp | 
 Numeric. Number of desired samples.  | 
raster | 
 SpatRaster. Raster to guide the location of the samples. If   | 
type | 
 Character. A string indicating the type of sampling method to use.
Possible values are   | 
access | 
 sf. Road access network - must be lines.  | 
buff_inner | 
 Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.  | 
buff_outer | 
 Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.  | 
details | 
 Logical. If   | 
filename | 
 Character. Path to write output samples.  | 
overwrite | 
 Logical. Choice to overwrite existing   | 
... | 
 Additional arguments for the sampling method selected.  | 
Value
An sf object of samples or a list object if details = TRUE
Note
When type = "clhs" or type = "balanced" all attributes in existing will be used for sampling.
Remove attributes not indented for sampling' prior to using this algorithm.
Author(s)
Tristan R.H. Goodbody
See Also
Other sample functions: 
sample_ahels(),
sample_balanced(),
sample_clhs(),
sample_nc(),
sample_srs(),
sample_strat(),
sample_sys_strat(),
sample_systematic()
Examples
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
#--- generate an existing sample adn extract metrics ---#
e <- sample_systematic(raster = mr, cellsize = 200)
e <- extract_metrics(existing = e, mraster = mr)
#--- perform clhs (default) sub-sampling ---#
sample_existing(
  existing = e,
  nSamp = 50
)
#--- perform balanced sub-sampling ---#
sample_existing(
  existing = e,
  nSamp = 50,
  type = "balanced"
)
#--- perform simple random sub-sampling ---#
sample_existing(
  existing = e,
  nSamp = 50,
  type = "srs"
)