calculate_pop {sgsR} | R Documentation |
Population descriptors
Description
Population matrices and descriptions of metric raster data
Calculates population level statistics including principal components, quantile matrix, and covariance matrix
needed necessary for calculate_lhsOpt
. Outputs can also be used as an input for sample_ahels
.
Usage
calculate_pop(mraster, PCA = FALSE, matQ = TRUE, nQuant = 10, matCov = TRUE)
Arguments
mraster |
spatRaster. ALS metrics raster. |
PCA |
Logical. Calculates principal component loadings of the population for PCA similarity factor testing.
|
matQ |
Logical. Calculates quantile matrix of the population for quantile comparison testing.
|
nQuant |
Numeric. Number of quantiles to divide the population into for |
matCov |
Logical. Calculates covariate matrix of the population. Needed for Kullback–Leibler divergence testing.
|
Value
List of matrices to be used as input for calculate_lhsOpt
.
Note
Special thanks to Dr. Brendan Malone for the original implementation of this algorithm.
Author(s)
Tristan R.H. Goodbody
References
Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451
See Also
Other calculate functions:
calculate_allocation()
,
calculate_allocation_existing()
,
calculate_coobs()
,
calculate_distance()
,
calculate_pcomp()
,
calculate_representation()
,
calculate_sampsize()
Examples
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
calculate_pop(mraster = mr)