posterior_vs_prior {rstanarm} | R Documentation |
Juxtapose prior and posterior
Description
Plot medians and central intervals comparing parameter draws from the prior
and posterior distributions. If the plotted priors look different than the
priors you think you specified it is likely either because of internal
rescaling or the use of the QR
argument (see the documentation for the
prior_summary
method for details on
these special cases).
Usage
posterior_vs_prior(object, ...)
## S3 method for class 'stanreg'
posterior_vs_prior(
object,
pars = NULL,
regex_pars = NULL,
prob = 0.9,
color_by = c("parameter", "vs", "none"),
group_by_parameter = FALSE,
facet_args = list(),
...
)
Arguments
object |
A fitted model object returned by one of the
rstanarm modeling functions. See |
... |
The S3 generic uses |
pars |
An optional character vector specifying a subset of parameters to
display. Parameters can be specified by name or several shortcuts can be
used. Using In addition, for If |
regex_pars |
An optional character vector of regular
expressions to use for parameter selection. |
prob |
A number |
color_by |
How should the estimates be colored? Use |
group_by_parameter |
Should estimates be grouped together by parameter
( |
facet_args |
A named list of arguments passed to
|
Value
A ggplot object that can be further customized using the ggplot2 package.
References
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, arXiv preprint, code on GitHub)
Examples
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
## Not run:
if (!exists("example_model")) example(example_model)
# display non-varying (i.e. not group-level) coefficients
posterior_vs_prior(example_model, pars = "beta")
# show group-level (varying) parameters and group by parameter
posterior_vs_prior(example_model, pars = "varying",
group_by_parameter = TRUE, color_by = "vs")
# group by parameter and allow axis scales to vary across facets
posterior_vs_prior(example_model, regex_pars = "period",
group_by_parameter = TRUE, color_by = "none",
facet_args = list(scales = "free"))
# assign to object and customize with functions from ggplot2
(gg <- posterior_vs_prior(example_model, pars = c("beta", "varying"), prob = 0.8))
gg +
ggplot2::geom_hline(yintercept = 0, size = 0.3, linetype = 3) +
ggplot2::coord_flip() +
ggplot2::ggtitle("Comparing the prior and posterior")
# compare very wide and very narrow priors using roaches example
# (see help(roaches, "rstanarm") for info on the dataset)
roaches$roach100 <- roaches$roach1 / 100
wide_prior <- normal(0, 10)
narrow_prior <- normal(0, 0.1)
fit_pois_wide_prior <- stan_glm(y ~ treatment + roach100 + senior,
offset = log(exposure2),
family = "poisson", data = roaches,
prior = wide_prior)
posterior_vs_prior(fit_pois_wide_prior, pars = "beta", prob = 0.5,
group_by_parameter = TRUE, color_by = "vs",
facet_args = list(scales = "free"))
fit_pois_narrow_prior <- update(fit_pois_wide_prior, prior = narrow_prior)
posterior_vs_prior(fit_pois_narrow_prior, pars = "beta", prob = 0.5,
group_by_parameter = TRUE, color_by = "vs",
facet_args = list(scales = "free"))
# look at cutpoints for ordinal model
fit_polr <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit",
prior = R2(0.2, "mean"), init_r = 0.1)
(gg_polr <- posterior_vs_prior(fit_polr, regex_pars = "\\|", color_by = "vs",
group_by_parameter = TRUE))
# flip the x and y axes
gg_polr + ggplot2::coord_flip()
## End(Not run)
}