A B C E F I K L M O P R S T W misc
rpf-package | rpf - Response Probability Functions |
An introduction | rpf - Response Probability Functions |
as.IFAgroup | Convert an OpenMx MxModel object into an IFA group |
bestToOmit | Identify the columns with most missing data |
chen.thissen.1997 | Computes local dependence indices for all pairs of items |
ChenThissen1997 | Computes local dependence indices for all pairs of items |
Class rpf.1dim | The base class for 1 dimensional response probability functions. |
Class rpf.1dim.drm | Unidimensional dichotomous item models (1PL, 2PL, and 3PL). |
Class rpf.1dim.gpcmp | Unidimensional generalized partial credit monotonic polynomial. |
Class rpf.1dim.graded | The base class for 1 dimensional graded response probability functions. |
Class rpf.1dim.grm | The unidimensional graded response item model. |
Class rpf.1dim.grmp | Unidimensional graded response monotonic polynomial. |
Class rpf.1dim.lmp | Unidimensional logistic function of a monotonic polynomial. |
Class rpf.base | The base class for response probability functions. |
Class rpf.mdim | The base class for multi-dimensional response probability functions. |
Class rpf.mdim.drm | Multidimensional dichotomous item models (M1PL, M2PL, and M3PL). |
Class rpf.mdim.graded | The base class for multi-dimensional graded response probability functions. |
Class rpf.mdim.grm | The multidimensional graded response item model. |
Class rpf.mdim.mcm | The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization). |
Class rpf.mdim.nrm | The nominal response item model (both unidimensional and multidimensional models have the same parameterization). |
collapseCategoricalCells | Collapse small sample size categorical frequency counts |
compressDataFrame | Compress a data frame into unique rows and frequencies |
crosstabTest | Monte-Carlo test for cross-tabulation tables |
EAPscores | Compute Expected A Posteriori (EAP) scores |
expandDataFrame | Expand summary table of patterns and frequencies |
fromFactorLoading | Convert factor loadings to response function slopes |
fromFactorThreshold | Convert factor thresholds to response function intercepts |
itemOutcomeBySumScore | Produce an item outcome by observed sum-score table |
kct | Knox Cube Test dataset |
kct.items | Knox Cube Test dataset |
kct.people | Knox Cube Test dataset |
logit | Transform from [0,1] to the reals |
LSAT6 | Description of LSAT6 data |
LSAT7 | Description of LSAT7 data |
multinomialFit | Multinomial fit test |
observedSumScore | Compute the observed sum-score |
omitItems | Omit the given items |
omitMostMissing | Omit items with the most missing data |
orderCompletely | Order a data.frame by missingness and all columns |
ordinal.gamma | Compute the ordinal gamma association statistic |
ptw2011.gof.test | Compute the P value that the observed and expected tables come from the same distribution |
read.flexmirt | Read a flexMIRT PRM file |
rpf.1dim-class | The base class for 1 dimensional response probability functions. |
rpf.1dim.drm-class | Unidimensional dichotomous item models (1PL, 2PL, and 3PL). |
rpf.1dim.fit | Calculate item and person Rasch fit statistics |
rpf.1dim.gpcmp-class | Unidimensional generalized partial credit monotonic polynomial. |
rpf.1dim.graded-class | The base class for 1 dimensional graded response probability functions. |
rpf.1dim.grm-class | The unidimensional graded response item model. |
rpf.1dim.grmp-class | Unidimensional graded response monotonic polynomial. |
rpf.1dim.lmp-class | Unidimensional logistic function of a monotonic polynomial. |
rpf.1dim.moment | Calculate cell central moments |
rpf.1dim.residual | Calculate residuals |
rpf.1dim.stdresidual | Calculate standardized residuals |
rpf.base-class | The base class for response probability functions. |
rpf.dLL | Item parameter derivatives |
rpf.dLL-method | Item parameter derivatives |
rpf.drm | Create a dichotomous response model |
rpf.dTheta | Item derivatives with respect to the location in the latent space |
rpf.dTheta-method | Item derivatives with respect to the location in the latent space |
rpf.gpcmp | Create monotonic polynomial generalized partial credit (GPC-MP) model |
rpf.grm | Create a graded response model |
rpf.grmp | Create monotonic polynomial graded response (GR-MP) model |
rpf.id_of | Convert an rpf item model name to an ID |
rpf.info | Map an item model, item parameters, and person trait score into a information vector |
rpf.lmp | Create logistic function of a monotonic polynomial (LMP) model |
rpf.logprob | Map an item model, item parameters, and person trait score into a probability vector |
rpf.logprob-method | Map an item model, item parameters, and person trait score into a probability vector |
rpf.mcm | Create a multiple-choice response model |
rpf.mdim-class | The base class for multi-dimensional response probability functions. |
rpf.mdim.drm-class | Multidimensional dichotomous item models (M1PL, M2PL, and M3PL). |
rpf.mdim.graded-class | The base class for multi-dimensional graded response probability functions. |
rpf.mdim.grm-class | The multidimensional graded response item model. |
rpf.mdim.mcm-class | The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization). |
rpf.mdim.nrm-class | The nominal response item model (both unidimensional and multidimensional models have the same parameterization). |
rpf.mean.info | Find the point where an item provides mean maximum information |
rpf.mean.info1 | Find the point where an item provides mean maximum information |
rpf.modify | Create a similar item specification with the given number of factors |
rpf.modify-method | Create a similar item specification with the given number of factors |
rpf.nrm | Create a nominal response model |
rpf.numParam | Length of the item parameter vector |
rpf.numParam-method | Length of the item parameter vector |
rpf.numSpec | Length of the item model vector |
rpf.numSpec-method | Length of the item model vector |
rpf.ogive | The ogive constant |
rpf.paramInfo | Retrieve a description of the given parameter |
rpf.paramInfo-method | Retrieve a description of the given parameter |
rpf.prob | Map an item model, item parameters, and person trait score into a probability vector |
rpf.prob-method | Map an item model, item parameters, and person trait score into a probability vector |
rpf.rescale | Rescale item parameters |
rpf.rescale-method | Rescale item parameters |
rpf.rparam | Generates item parameters |
rpf.rparam-method | Generates item parameters |
rpf.sample | Randomly sample response patterns given a list of items |
rpf_numParam_wrapper | Length of the item parameter vector |
rpf_numSpec_wrapper | Length of the item model vector |
rpf_paramInfo_wrapper | Retrieve a description of the given parameter |
science | Liking for Science dataset |
sfif | Liking for Science dataset |
sfpf | Liking for Science dataset |
sfsf | Liking for Science dataset |
sfxf | Liking for Science dataset |
SitemFit | Compute the S fit statistic for a set of items |
SitemFit1 | Compute the S fit statistic for 1 item |
stripData | Strip data and scores from an IFA group |
sumScoreEAP | Compute the sum-score EAP table |
sumScoreEAPTest | Conduct the sum-score EAP distribution test |
tabulateRows | Tabulate data.frame rows |
toFactorLoading | Convert response function slopes to factor loadings |
toFactorThreshold | Convert response function intercepts to factor thresholds |
write.flexmirt | Write a flexMIRT PRM file |
$-method | The base class for response probability functions. |
$<--method | The base class for response probability functions. |
_rpf_dLL | Item parameter derivatives |
_rpf_dTheta | Item derivatives with respect to the location in the latent space |
_rpf_logprob | Map an item model, item parameters, and person trait score into a probability vector |
_rpf_prob | Map an item model, item parameters, and person trait score into a probability vector |
_rpf_rescale | Rescale item parameters |