Response Probability Functions


[Up] [Top]

Documentation for package ‘rpf’ version 1.0.14

Help Pages

A B C E F I K L M O P R S T W misc

rpf-package rpf - Response Probability Functions

-- A --

An introduction rpf - Response Probability Functions
as.IFAgroup Convert an OpenMx MxModel object into an IFA group

-- B --

bestToOmit Identify the columns with most missing data

-- C --

chen.thissen.1997 Computes local dependence indices for all pairs of items
ChenThissen1997 Computes local dependence indices for all pairs of items
Class rpf.1dim The base class for 1 dimensional response probability functions.
Class rpf.1dim.drm Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
Class rpf.1dim.gpcmp Unidimensional generalized partial credit monotonic polynomial.
Class rpf.1dim.graded The base class for 1 dimensional graded response probability functions.
Class rpf.1dim.grm The unidimensional graded response item model.
Class rpf.1dim.grmp Unidimensional graded response monotonic polynomial.
Class rpf.1dim.lmp Unidimensional logistic function of a monotonic polynomial.
Class rpf.base The base class for response probability functions.
Class rpf.mdim The base class for multi-dimensional response probability functions.
Class rpf.mdim.drm Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
Class rpf.mdim.graded The base class for multi-dimensional graded response probability functions.
Class rpf.mdim.grm The multidimensional graded response item model.
Class rpf.mdim.mcm The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.mdim.nrm The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
collapseCategoricalCells Collapse small sample size categorical frequency counts
compressDataFrame Compress a data frame into unique rows and frequencies
crosstabTest Monte-Carlo test for cross-tabulation tables

-- E --

EAPscores Compute Expected A Posteriori (EAP) scores
expandDataFrame Expand summary table of patterns and frequencies

-- F --

fromFactorLoading Convert factor loadings to response function slopes
fromFactorThreshold Convert factor thresholds to response function intercepts

-- I --

itemOutcomeBySumScore Produce an item outcome by observed sum-score table

-- K --

kct Knox Cube Test dataset
kct.items Knox Cube Test dataset
kct.people Knox Cube Test dataset

-- L --

logit Transform from [0,1] to the reals
LSAT6 Description of LSAT6 data
LSAT7 Description of LSAT7 data

-- M --

multinomialFit Multinomial fit test

-- O --

observedSumScore Compute the observed sum-score
omitItems Omit the given items
omitMostMissing Omit items with the most missing data
orderCompletely Order a data.frame by missingness and all columns
ordinal.gamma Compute the ordinal gamma association statistic

-- P --

ptw2011.gof.test Compute the P value that the observed and expected tables come from the same distribution

-- R --

read.flexmirt Read a flexMIRT PRM file
rpf.1dim-class The base class for 1 dimensional response probability functions.
rpf.1dim.drm-class Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
rpf.1dim.fit Calculate item and person Rasch fit statistics
rpf.1dim.gpcmp-class Unidimensional generalized partial credit monotonic polynomial.
rpf.1dim.graded-class The base class for 1 dimensional graded response probability functions.
rpf.1dim.grm-class The unidimensional graded response item model.
rpf.1dim.grmp-class Unidimensional graded response monotonic polynomial.
rpf.1dim.lmp-class Unidimensional logistic function of a monotonic polynomial.
rpf.1dim.moment Calculate cell central moments
rpf.1dim.residual Calculate residuals
rpf.1dim.stdresidual Calculate standardized residuals
rpf.base-class The base class for response probability functions.
rpf.dLL Item parameter derivatives
rpf.dLL-method Item parameter derivatives
rpf.drm Create a dichotomous response model
rpf.dTheta Item derivatives with respect to the location in the latent space
rpf.dTheta-method Item derivatives with respect to the location in the latent space
rpf.gpcmp Create monotonic polynomial generalized partial credit (GPC-MP) model
rpf.grm Create a graded response model
rpf.grmp Create monotonic polynomial graded response (GR-MP) model
rpf.id_of Convert an rpf item model name to an ID
rpf.info Map an item model, item parameters, and person trait score into a information vector
rpf.lmp Create logistic function of a monotonic polynomial (LMP) model
rpf.logprob Map an item model, item parameters, and person trait score into a probability vector
rpf.logprob-method Map an item model, item parameters, and person trait score into a probability vector
rpf.mcm Create a multiple-choice response model
rpf.mdim-class The base class for multi-dimensional response probability functions.
rpf.mdim.drm-class Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
rpf.mdim.graded-class The base class for multi-dimensional graded response probability functions.
rpf.mdim.grm-class The multidimensional graded response item model.
rpf.mdim.mcm-class The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.mdim.nrm-class The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.mean.info Find the point where an item provides mean maximum information
rpf.mean.info1 Find the point where an item provides mean maximum information
rpf.modify Create a similar item specification with the given number of factors
rpf.modify-method Create a similar item specification with the given number of factors
rpf.nrm Create a nominal response model
rpf.numParam Length of the item parameter vector
rpf.numParam-method Length of the item parameter vector
rpf.numSpec Length of the item model vector
rpf.numSpec-method Length of the item model vector
rpf.ogive The ogive constant
rpf.paramInfo Retrieve a description of the given parameter
rpf.paramInfo-method Retrieve a description of the given parameter
rpf.prob Map an item model, item parameters, and person trait score into a probability vector
rpf.prob-method Map an item model, item parameters, and person trait score into a probability vector
rpf.rescale Rescale item parameters
rpf.rescale-method Rescale item parameters
rpf.rparam Generates item parameters
rpf.rparam-method Generates item parameters
rpf.sample Randomly sample response patterns given a list of items
rpf_numParam_wrapper Length of the item parameter vector
rpf_numSpec_wrapper Length of the item model vector
rpf_paramInfo_wrapper Retrieve a description of the given parameter

-- S --

science Liking for Science dataset
sfif Liking for Science dataset
sfpf Liking for Science dataset
sfsf Liking for Science dataset
sfxf Liking for Science dataset
SitemFit Compute the S fit statistic for a set of items
SitemFit1 Compute the S fit statistic for 1 item
stripData Strip data and scores from an IFA group
sumScoreEAP Compute the sum-score EAP table
sumScoreEAPTest Conduct the sum-score EAP distribution test

-- T --

tabulateRows Tabulate data.frame rows
toFactorLoading Convert response function slopes to factor loadings
toFactorThreshold Convert response function intercepts to factor thresholds

-- W --

write.flexmirt Write a flexMIRT PRM file

-- misc --

$-method The base class for response probability functions.
$<--method The base class for response probability functions.
_rpf_dLL Item parameter derivatives
_rpf_dTheta Item derivatives with respect to the location in the latent space
_rpf_logprob Map an item model, item parameters, and person trait score into a probability vector
_rpf_prob Map an item model, item parameters, and person trait score into a probability vector
_rpf_rescale Rescale item parameters