rpf.drm {rpf} | R Documentation |
Create a dichotomous response model
Description
For slope vector a, intercept c, pseudo-guessing parameter g, upper bound u, and latent ability vector theta, the response probability function is
\mathrm P(\mathrm{pick}=0|a,c,g,u,\theta) = 1- \mathrm P(\mathrm{pick}=1|a,c,g,u,\theta)
\mathrm P(\mathrm{pick}=1|a,c,g,u,\theta) = g+(u-g)\frac{1}{1+\exp(-(a\theta + c))}
Usage
rpf.drm(factors = 1, multidimensional = TRUE, poor = FALSE)
Arguments
factors |
the number of factors |
multidimensional |
whether to use a multidimensional model.
Defaults to |
poor |
if TRUE, use the traditional parameterization of the 1d model instead of the slope-intercept parameterization |
Details
The pseudo-guessing and upper bound parameter are specified in
logit units (see logit
).
For discussion on the choice of priors see Cai, Yang, and Hansen (2011, p. 246).
Value
an item model
References
Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized Full-Information Item Bifactor Analysis. Psychological Methods, 16(3), 221-248.
See Also
Other response model:
rpf.gpcmp()
,
rpf.grmp()
,
rpf.grm()
,
rpf.lmp()
,
rpf.mcm()
,
rpf.nrm()
Examples
spec <- rpf.drm()
rpf.prob(spec, rpf.rparam(spec), 0)