win.ia {poppr} | R Documentation |
Calculate windows of the index of association for genlight objects.
Description
Genlight objects can contain millions of loci. Since it does not make much sense to calculate the index of association over that many loci, this function will scan windows across the loci positions and calculate the index of association.
Usage
win.ia(
x,
window = 100L,
min.snps = 3L,
threads = 1L,
quiet = FALSE,
name_window = TRUE,
chromosome_buffer = TRUE
)
Arguments
x |
|
window |
an integer specifying the size of the window. |
min.snps |
an integer specifying the minimum number of snps allowed per
window. If a window does not meet this criteria, the value will return as
|
threads |
The maximum number of parallel threads to be used within this
function. Defaults to 1 thread, in which the function will run serially. A
value of 0 will attempt to use as many threads as there are available
cores/CPUs. In most cases this is ideal for speed. Note: this option is
passed to |
quiet |
if |
name_window |
if |
chromosome_buffer |
DEPRECATED if |
Value
A value of the standardized index of association for all windows in each chromosome.
Note
this will calculate the standardized index of association from Agapow
and Burt, 2001. See ia()
for details.
Author(s)
Zhian N. Kamvar, Jonah C. Brooks
See Also
genlight, snpclone, ia()
, samp.ia()
, bitwise.dist()
Examples
# with structured snps assuming 1e4 positions
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2, n.snp.struc = 5e2, ploidy = 2)
position(x) <- sort(sample(1e4, 1e3))
res <- win.ia(x, window = 300L) # Calculate for windows of size 300
plot(res, type = "l")
## Not run:
# unstructured snps
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 1e3, ploidy = 2)
position(x) <- sort(sample(1e4, 1e3))
res <- win.ia(x, window = 300L) # Calculate for windows of size 300
plot(res, type = "l")
# Accounting for chromosome coordinates
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2, n.snp.struc = 5e2, ploidy = 2)
position(x) <- as.vector(vapply(1:10, function(x) sort(sample(1e3, 100)), integer(100)))
chromosome(x) <- rep(1:10, each = 100)
res <- win.ia(x, window = 100L)
plot(res, type = "l")
# Converting chromosomal coordinates to tidy data
library("dplyr")
library("tidyr")
res_tidy <- res %>%
tibble(rd = ., chromosome = names(.)) %>% # create two column data frame
separate(chromosome, into = c("chromosome", "position")) %>% # get the position info
mutate(position = as.integer(position)) %>% # force position as integers
mutate(chromosome = factor(chromosome, unique(chromosome))) # force order chromosomes
res_tidy
# Plotting with ggplot2
library("ggplot2")
ggplot(res_tidy, aes(x = position, y = rd, color = chromosome)) +
geom_line() +
facet_wrap(~chromosome, nrow = 1) +
ylab(expression(bar(r)[d])) +
xlab("terminal position of sliding window") +
labs(caption = "window size: 100bp") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
theme(legend.position = "top")
## End(Not run)