check_normaldist {plotfunctions} | R Documentation |
Compare distribution of data with normal distribution.
Description
Compare distribution of data with normal distribution.
Usage
check_normaldist(
res,
col = "red",
col.normal = "black",
legend.pos = "topright",
legend.label = "data",
...
)
Arguments
res |
Vector with residuals or other data for which the distribution . |
col |
Color for filling the area. Default is black. |
col.normal |
Color for shading and line of normal distribution. |
legend.pos |
Position of legend, can be string (e.g., 'topleft') or an
|
legend.label |
Text string, label for plotted data distribution. |
... |
Optional arguments for the lines. See |
Note
Assumes centered data as input.
Author(s)
Jacolien van Rij
See Also
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
Examples
set.seed(123)
# normal distribution:
test <- rnorm(1000)
check_normaldist(test)
# t-distribution:
test <- rt(1000, df=5)
check_normaldist(test)
# skewed data, e.g., reaction times:
test <- exp(rnorm(1000, mean=.500, sd=.25))
check_normaldist(test)
# center first:
check_normaldist(scale(test))
# binomial distribution:
test <- rbinom(1000, 1, .3)
check_normaldist(test)
# count data:
test <- rbinom(1000, 100, .3)
check_normaldist(test)