bootstrap_model | Model bootstrapping |
bootstrap_model.default | Model bootstrapping |
bootstrap_model.merMod | Model bootstrapping |
bootstrap_parameters | Parameters bootstrapping |
bootstrap_parameters.default | Parameters bootstrapping |
ci.default | Confidence Intervals (CI) |
ci.glmmTMB | Confidence Intervals (CI) |
ci.merMod | Confidence Intervals (CI) |
ci_betwithin | Between-within approximation for SEs, CIs and p-values |
ci_kenward | Kenward-Roger approximation for SEs, CIs and p-values |
ci_ml1 | "m-l-1" approximation for SEs, CIs and p-values |
ci_satterthwaite | Satterthwaite approximation for SEs, CIs and p-values |
closest_component | Principal Component Analysis (PCA) and Factor Analysis (FA) |
cluster_analysis | Cluster Analysis |
cluster_centers | Find the cluster centers in your data |
cluster_discrimination | Compute a linear discriminant analysis on classified cluster groups |
cluster_meta | Metaclustering |
cluster_performance | Performance of clustering models |
cluster_performance.dbscan | Performance of clustering models |
cluster_performance.hclust | Performance of clustering models |
cluster_performance.kmeans | Performance of clustering models |
cluster_performance.parameters_clusters | Performance of clustering models |
compare_models | Compare model parameters of multiple models |
compare_parameters | Compare model parameters of multiple models |
confidence_curve | p-value or consonance function |
consonance_function | p-value or consonance function |
convert_efa_to_cfa | Conversion between EFA results and CFA structure |
convert_efa_to_cfa.fa | Conversion between EFA results and CFA structure |
degrees_of_freedom | Degrees of Freedom (DoF) |
degrees_of_freedom.default | Degrees of Freedom (DoF) |
display.equivalence_test_lm | Print tables in different output formats |
display.parameters_efa | Print tables in different output formats |
display.parameters_efa_summary | Print tables in different output formats |
display.parameters_model | Print tables in different output formats |
display.parameters_sem | Print tables in different output formats |
dof | Degrees of Freedom (DoF) |
dof_betwithin | Between-within approximation for SEs, CIs and p-values |
dof_kenward | Kenward-Roger approximation for SEs, CIs and p-values |
dof_ml1 | "m-l-1" approximation for SEs, CIs and p-values |
dof_satterthwaite | Satterthwaite approximation for SEs, CIs and p-values |
dominance_analysis | Dominance Analysis |
efa_to_cfa | Conversion between EFA results and CFA structure |
equivalence_test.ggeffects | Equivalence test |
equivalence_test.lm | Equivalence test |
equivalence_test.merMod | Equivalence test |
factor_analysis | Principal Component Analysis (PCA) and Factor Analysis (FA) |
fish | Sample data set |
format.compare_parameters | Print comparisons of model parameters |
format.parameters_model | Print model parameters |
format_df_adjust | Format the name of the degrees-of-freedom adjustment methods |
format_order | Order (first, second, ...) formatting |
format_parameters | Parameter names formatting |
format_parameters.default | Parameter names formatting |
format_p_adjust | Format the name of the p-value adjustment methods |
get_scores | Get Scores from Principal Component Analysis (PCA) |
model_parameters | Model Parameters |
model_parameters.afex_aov | Parameters from ANOVAs |
model_parameters.aov | Parameters from ANOVAs |
model_parameters.averaging | Parameters from special models |
model_parameters.befa | Parameters from Bayesian Exploratory Factor Analysis |
model_parameters.betamfx | Parameters from special models |
model_parameters.betaor | Parameters from special models |
model_parameters.betareg | Parameters from special models |
model_parameters.BFBayesFactor | Parameters from BayesFactor objects |
model_parameters.bifeAPEs | Parameters from multinomial or cumulative link models |
model_parameters.bracl | Parameters from multinomial or cumulative link models |
model_parameters.brmsfit | Parameters from Bayesian Models |
model_parameters.censReg | Parameters from (General) Linear Models |
model_parameters.cgam | Parameters from Generalized Additive (Mixed) Models |
model_parameters.clm2 | Parameters from multinomial or cumulative link models |
model_parameters.clmm | Parameters from Mixed Models |
model_parameters.clmm2 | Parameters from Mixed Models |
model_parameters.coeftest | Parameters from hypothesis tests |
model_parameters.cpglmm | Parameters from Mixed Models |
model_parameters.data.frame | Parameters from Bayesian Models |
model_parameters.dbscan | Parameters from Cluster Models (k-means, ...) |
model_parameters.default | Parameters from (General) Linear Models |
model_parameters.DirichletRegModel | Parameters from multinomial or cumulative link models |
model_parameters.draws | Parameters from Bayesian Models |
model_parameters.emm_list | Parameters from special models |
model_parameters.Gam | Parameters from Generalized Additive (Mixed) Models |
model_parameters.gamm | Parameters from Generalized Additive (Mixed) Models |
model_parameters.glht | Parameters from Hypothesis Testing |
model_parameters.glimML | Parameters from special models |
model_parameters.glm | Parameters from (General) Linear Models |
model_parameters.glmmTMB | Parameters from Mixed Models |
model_parameters.glmx | Parameters from special models |
model_parameters.hclust | Parameters from Cluster Models (k-means, ...) |
model_parameters.hkmeans | Parameters from Cluster Models (k-means, ...) |
model_parameters.htest | Parameters from hypothesis tests |
model_parameters.kmeans | Parameters from Cluster Models (k-means, ...) |
model_parameters.lavaan | Parameters from PCA, FA, CFA, SEM |
model_parameters.lme | Parameters from Mixed Models |
model_parameters.marginaleffects | Parameters from special models |
model_parameters.Mclust | Parameters from Cluster Models (k-means, ...) |
model_parameters.MCMCglmm | Parameters from Bayesian Models |
model_parameters.merMod | Parameters from Mixed Models |
model_parameters.metaplus | Parameters from special models |
model_parameters.meta_bma | Parameters from special models |
model_parameters.meta_random | Parameters from special models |
model_parameters.mhurdle | Parameters from Zero-Inflated Models |
model_parameters.mipo | Parameters from multiply imputed repeated analyses |
model_parameters.mira | Parameters from multiply imputed repeated analyses |
model_parameters.mixed | Parameters from Mixed Models |
model_parameters.MixMod | Parameters from Mixed Models |
model_parameters.mjoint | Parameters from special models |
model_parameters.mlm | Parameters from multinomial or cumulative link models |
model_parameters.mvord | Parameters from special models |
model_parameters.pam | Parameters from Cluster Models (k-means, ...) |
model_parameters.PCA | Parameters from PCA, FA, CFA, SEM |
model_parameters.principal | Parameters from PCA, FA, CFA, SEM |
model_parameters.pvclust | Parameters from Cluster Models (k-means, ...) |
model_parameters.ridgelm | Parameters from (General) Linear Models |
model_parameters.rma | Parameters from Meta-Analysis |
model_parameters.scam | Parameters from Generalized Additive (Mixed) Models |
model_parameters.selection | Parameters from special models |
model_parameters.stanreg | Parameters from Bayesian Models |
model_parameters.t1way | Parameters from robust statistical objects in 'WRS2' |
model_parameters.zcpglm | Parameters from Zero-Inflated Models |
n_clusters | Find number of clusters in your data |
n_clusters_dbscan | Find number of clusters in your data |
n_clusters_elbow | Find number of clusters in your data |
n_clusters_gap | Find number of clusters in your data |
n_clusters_hclust | Find number of clusters in your data |
n_clusters_silhouette | Find number of clusters in your data |
n_components | Number of components/factors to retain in PCA/FA |
n_factors | Number of components/factors to retain in PCA/FA |
parameters | Model Parameters |
parameters_type | Type of model parameters |
pool_parameters | Pool Model Parameters |
predict.parameters_clusters | Predict method for parameters_clusters objects |
predict.parameters_efa | Principal Component Analysis (PCA) and Factor Analysis (FA) |
principal_components | Principal Component Analysis (PCA) and Factor Analysis (FA) |
print.compare_parameters | Print comparisons of model parameters |
print.parameters_efa | Principal Component Analysis (PCA) and Factor Analysis (FA) |
print.parameters_model | Print model parameters |
print_html.compare_parameters | Print comparisons of model parameters |
print_html.parameters_model | Print model parameters |
print_md.compare_parameters | Print comparisons of model parameters |
print_md.parameters_model | Print model parameters |
print_table | Print tables in different output formats |
p_calibrate | Calculate calibrated p-values. |
p_calibrate.default | Calculate calibrated p-values. |
p_function | p-value or consonance function |
p_value | p-values |
p_value.averaging | p-values for Models with Special Components |
p_value.betamfx | p-values for Marginal Effects Models |
p_value.betaor | p-values for Marginal Effects Models |
p_value.betareg | p-values for Models with Special Components |
p_value.BFBayesFactor | p-values for Bayesian Models |
p_value.cgam | p-values for Models with Special Components |
p_value.clm2 | p-values for Models with Special Components |
p_value.default | p-values |
p_value.DirichletRegModel | p-values for Models with Special Components |
p_value.emmGrid | p-values |
p_value.poissonmfx | p-values for Marginal Effects Models |
p_value.zcpglm | p-values for Models with Zero-Inflation |
p_value.zeroinfl | p-values for Models with Zero-Inflation |
p_value_betwithin | Between-within approximation for SEs, CIs and p-values |
p_value_kenward | Kenward-Roger approximation for SEs, CIs and p-values |
p_value_ml1 | "m-l-1" approximation for SEs, CIs and p-values |
p_value_satterthwaite | Satterthwaite approximation for SEs, CIs and p-values |
qol_cancer | Sample data set |
random_parameters | Summary information from random effects |
reduce_data | Dimensionality reduction (DR) / Features Reduction |
reduce_parameters | Dimensionality reduction (DR) / Features Reduction |
reshape_loadings | Reshape loadings between wide/long formats |
reshape_loadings.data.frame | Reshape loadings between wide/long formats |
reshape_loadings.parameters_efa | Reshape loadings between wide/long formats |
rotated_data | Principal Component Analysis (PCA) and Factor Analysis (FA) |
select_parameters | Automated selection of model parameters |
select_parameters.lm | Automated selection of model parameters |
select_parameters.merMod | Automated selection of model parameters |
se_kenward | Kenward-Roger approximation for SEs, CIs and p-values |
se_satterthwaite | Satterthwaite approximation for SEs, CIs and p-values |
simulate_model | Simulated draws from model coefficients |
simulate_model.glmmTMB | Simulated draws from model coefficients |
simulate_parameters | Simulate Model Parameters |
simulate_parameters.default | Simulate Model Parameters |
simulate_parameters.glmmTMB | Simulate Model Parameters |
sort.parameters_efa | Principal Component Analysis (PCA) and Factor Analysis (FA) |
sort_parameters | Sort parameters by coefficient values |
sort_parameters.default | Sort parameters by coefficient values |
standardise_info | Get Standardization Information |
standardise_parameters | Parameters standardization |
standardise_posteriors | Parameters standardization |
standardize_info | Get Standardization Information |
standardize_info.default | Get Standardization Information |
standardize_parameters | Parameters standardization |
standardize_posteriors | Parameters standardization |
standard_error | Standard Errors |
standard_error.default | Standard Errors |
standard_error.factor | Standard Errors |
standard_error.glmmTMB | Standard Errors |
standard_error.merMod | Standard Errors |
summary.parameters_model | Print model parameters |