model_parameters.aov {parameters} | R Documentation |
Parameters from ANOVAs
Description
Parameters from ANOVAs
Usage
## S3 method for class 'aov'
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
es_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
...
)
## S3 method for class 'afex_aov'
model_parameters(
model,
es_type = NULL,
df_error = NULL,
type = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
Arguments
model |
Object of class |
type |
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
ANOVA-tables using |
df_error |
Denominator degrees of freedom (or degrees of freedom of the
error estimate, i.e., the residuals). This is used to compute effect sizes
for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
|
ci |
Confidence Interval (CI) level for effect sizes specified in
|
alternative |
A character string specifying the alternative hypothesis;
Controls the type of CI returned: |
test |
String, indicating the type of test for |
power |
Logical, if |
es_type |
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names. |
keep |
Character containing a regular expression pattern that
describes the parameters that should be included (for |
drop |
See |
table_wide |
Logical that decides whether the ANOVA table should be in
wide format, i.e. should the numerator and denominator degrees of freedom
be in the same row. Default: |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to |
Details
For an object of class
htest
, data is extracted viainsight::get_data()
, and passed to the relevant function according to:A t-test depending on
type
:"cohens_d"
(default),"hedges_g"
, or one of"p_superiority"
,"u1"
,"u2"
,"u3"
,"overlap"
.For a Paired t-test: depending on
type
:"rm_rm"
,"rm_av"
,"rm_b"
,"rm_d"
,"rm_z"
.
A Chi-squared tests of independence or Fisher's Exact Test, depending on
type
:"cramers_v"
(default),"tschuprows_t"
,"phi"
,"cohens_w"
,"pearsons_c"
,"cohens_h"
,"oddsratio"
,"riskratio"
,"arr"
, or"nnt"
.A Chi-squared tests of goodness-of-fit, depending on
type
:"fei"
(default)"cohens_w"
,"pearsons_c"
A One-way ANOVA test, depending on
type
:"eta"
(default),"omega"
or"epsilon"
-squared,"f"
, or"f2"
.A McNemar test returns Cohen's g.
A Wilcoxon test depending on
type
: returns "rank_biserial
" correlation (default) or one of"p_superiority"
,"vda"
,"u2"
,"u3"
,"overlap"
.A Kruskal-Wallis test depending on
type
:"epsilon"
(default) or"eta"
.A Friedman test returns Kendall's W. (Where applicable,
ci
andalternative
are taken from thehtest
if not otherwise provided.)
For an object of class
BFBayesFactor
, usingbayestestR::describe_posterior()
,A t-test depending on
type
:"cohens_d"
(default) or one of"p_superiority"
,"u1"
,"u2"
,"u3"
,"overlap"
.A correlation test returns r.
A contingency table test, depending on
type
:"cramers_v"
(default),"phi"
,"tschuprows_t"
,"cohens_w"
,"pearsons_c"
,"cohens_h"
,"oddsratio"
, or"riskratio"
,"arr"
, or"nnt"
.A proportion test returns p.
Objects of class
anova
,aov
,aovlist
orafex_aov
, depending ontype
:"eta"
(default),"omega"
or"epsilon"
-squared,"f"
, or"f2"
.Other objects are passed to
parameters::standardize_parameters()
.
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
Value
A data frame of indices related to the model's parameters.
Note
For ANOVA-tables from mixed models (i.e. anova(lmer())
), only
partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs
with interactions involved only give sensible and informative results when
covariates are mean-centred and factors are coded with orthogonal contrasts
(such as those produced by contr.sum
, contr.poly
, or
contr.helmert
, but not by the default contr.treatment
).
Examples
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)
model_parameters(model, es_type = c("omega", "eta"), ci = 0.9)
model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(
model,
es_type = c("omega", "eta", "epsilon"),
alternative = "greater"
)
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)
# simple parameters table
model_parameters(model)
# parameters table including effect sizes
model_parameters(
model,
es_type = "eta",
ci = 0.9,
df_error = dof_satterthwaite(mm)[2:3]
)