| model_parameters.aov {parameters} | R Documentation |
Parameters from ANOVAs
Description
Parameters from ANOVAs
Usage
## S3 method for class 'aov'
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
es_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
...
)
## S3 method for class 'afex_aov'
model_parameters(
model,
es_type = NULL,
df_error = NULL,
type = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
Arguments
model |
Object of class |
type |
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
ANOVA-tables using |
df_error |
Denominator degrees of freedom (or degrees of freedom of the
error estimate, i.e., the residuals). This is used to compute effect sizes
for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
|
ci |
Confidence Interval (CI) level for effect sizes specified in
|
alternative |
A character string specifying the alternative hypothesis;
Controls the type of CI returned: |
test |
String, indicating the type of test for |
power |
Logical, if |
es_type |
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names. |
keep |
Character containing a regular expression pattern that
describes the parameters that should be included (for |
drop |
See |
table_wide |
Logical that decides whether the ANOVA table should be in
wide format, i.e. should the numerator and denominator degrees of freedom
be in the same row. Default: |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to |
Details
For an object of class
htest, data is extracted viainsight::get_data(), and passed to the relevant function according to:A t-test depending on
type:"cohens_d"(default),"hedges_g", or one of"p_superiority","u1","u2","u3","overlap".For a Paired t-test: depending on
type:"rm_rm","rm_av","rm_b","rm_d","rm_z".
A Chi-squared tests of independence or Fisher's Exact Test, depending on
type:"cramers_v"(default),"tschuprows_t","phi","cohens_w","pearsons_c","cohens_h","oddsratio","riskratio","arr", or"nnt".A Chi-squared tests of goodness-of-fit, depending on
type:"fei"(default)"cohens_w","pearsons_c"A One-way ANOVA test, depending on
type:"eta"(default),"omega"or"epsilon"-squared,"f", or"f2".A McNemar test returns Cohen's g.
A Wilcoxon test depending on
type: returns "rank_biserial" correlation (default) or one of"p_superiority","vda","u2","u3","overlap".A Kruskal-Wallis test depending on
type:"epsilon"(default) or"eta".A Friedman test returns Kendall's W. (Where applicable,
ciandalternativeare taken from thehtestif not otherwise provided.)
For an object of class
BFBayesFactor, usingbayestestR::describe_posterior(),A t-test depending on
type:"cohens_d"(default) or one of"p_superiority","u1","u2","u3","overlap".A correlation test returns r.
A contingency table test, depending on
type:"cramers_v"(default),"phi","tschuprows_t","cohens_w","pearsons_c","cohens_h","oddsratio", or"riskratio","arr", or"nnt".A proportion test returns p.
Objects of class
anova,aov,aovlistorafex_aov, depending ontype:"eta"(default),"omega"or"epsilon"-squared,"f", or"f2".Other objects are passed to
parameters::standardize_parameters().
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
Value
A data frame of indices related to the model's parameters.
Note
For ANOVA-tables from mixed models (i.e. anova(lmer())), only
partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs
with interactions involved only give sensible and informative results when
covariates are mean-centred and factors are coded with orthogonal contrasts
(such as those produced by contr.sum, contr.poly, or
contr.helmert, but not by the default contr.treatment).
Examples
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)
model_parameters(model, es_type = c("omega", "eta"), ci = 0.9)
model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(
model,
es_type = c("omega", "eta", "epsilon"),
alternative = "greater"
)
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)
# simple parameters table
model_parameters(model)
# parameters table including effect sizes
model_parameters(
model,
es_type = "eta",
ci = 0.9,
df_error = dof_satterthwaite(mm)[2:3]
)