Analyze Paleontological Time-Series


[Up] [Top]

Documentation for package ‘paleoTS’ version 0.6.1

Help Pages

akaike.wts Compute Akaike weights from AIC scores
as.paleoTS Make a Paleontological Time-series object
as.paleoTSfit Create a 'paleoTSfit' object
bootSimpleComplex Bootstrap test to see if a complex model is significantly better than a simple model.
cantius_L Time-series of the length of lower first molar for the Cantius lineage
checkSSMresiduals Compute and (optionally) plot residuals from SSM model fit
compareModels Compare model fits for a paleontological time-series
dorsal.spines Time-series of dorsal spine data from a fossil stickleback lineage
ESD Compute Expected Squared Divergence (ESD) for Evolutionary Models
fit.sgs Fit a model of trait evolution with a protracted punctuation.
fit3models Fit a set of standard evolutionary models
fit4models Fit a set of standard evolutionary models
fit9models Fit large set of models to a time-series
fitGpunc Fit trait evolution model with punctuations estimated from the data
fitModeShift Fit model in which the mode of trait evolution shifts once
fitMult Fit the same simple model across multiple time-series
fitSimple Fit simple models of trait evolution
IC Compute Information Criteria
Kfiltertv Time-varying Kalman filter calculations
ln.paleoTS Approximate log-transformation of time-series data
LRI Log-rate, Log-interval (LRI) method of Gingerich
lynchD Compute Lynch's Delta rate metric
mle.GRW Analytical ML estimator for random walk and stasis models
mle.Stasis Analytical ML estimator for random walk and stasis models
mle.URW Analytical ML estimator for random walk and stasis models
opt.covTrack Fit a model in which a trait tracks a covariate
opt.GRW Fit evolutionary model using "AD" parameterization
opt.GRW.shift Fit random walk model with shift(s) in generating parameters
opt.joint.covTrack Fit a model in which a trait tracks a covariate
opt.joint.GRW Fit evolutionary models using the "Joint" parameterization
opt.joint.OU Fit Ornstein-Uhlenbeck model using the "Joint" parameterization
opt.joint.punc Fit a model of trait evolution with specified punctuation(s)
opt.joint.Stasis Fit evolutionary models using the "Joint" parameterization
opt.joint.StrictStasis Fit evolutionary models using the "Joint" parameterization
opt.joint.URW Fit evolutionary models using the "Joint" parameterization
opt.punc Fit a model of trait evolution with specified punctuation(s)
opt.ssm.ACDC Fit evolutionary models using state-space models (SSM)
opt.ssm.covOU Fit evolutionary models using state-space models (SSM)
opt.ssm.covOU_vshift Fit evolutionary models using state-space models (SSM)
opt.ssm.GRW Fit evolutionary models using state-space models (SSM)
opt.ssm.OU Fit evolutionary models using state-space models (SSM)
opt.ssm.Stasis Fit evolutionary models using state-space models (SSM)
opt.ssm.StrictStasis Fit evolutionary models using state-space models (SSM)
opt.ssm.URW Fit evolutionary models using state-space models (SSM)
opt.ssm.URWshift Fit evolutionary models using state-space models (SSM)
opt.Stasis Fit evolutionary model using "AD" parameterization
opt.StrictStasis Fit evolutionary model using "AD" parameterization
opt.URW Fit evolutionary model using "AD" parameterization
plot.paleoTS Plot a paleoTS object
pool.var Compute a pooled variance
print.paleoTSfit Print a paleoTSfit object
read.paleoTS Read a text-file with data from a paleontological time-series
sim.covTrack Simulate trait evolution that tracks a covariate
sim.GRW Simulate random walk or directional time-series for trait evolution
sim.GRW.shift Simulate (general) random walk with shift(s) in generating parameters
sim.OU Simulate an Ornstein-Uhlenbeck time-series
sim.punc Simulate a punctuated time-series
sim.sgs Simulate protracted punctuation
sim.Stasis Simulate Stasis time-series for trait evolution
sim.Stasis.RW Simulate trait evolution with a mode shift
std.paleoTS Convert time-series to standard deviation units
sub.paleoTS Subsample a paleontological time-series
test.var.het Test for heterogeneity of variances among samples in a time-series