| mle.GRW {paleoTS} | R Documentation |
Analytical ML estimator for random walk and stasis models
Description
Analytical ML estimator for random walk and stasis models
Usage
mle.GRW(y)
mle.URW(y)
mle.Stasis(y)
Arguments
y |
a |
Value
a vector of mstep and vstep for mle.GRW,
vstep for mle.URW, and theta and omega for
mle.Stasis
Functions
-
mle.URW(): ML parameter estimates for URW model -
mle.Stasis(): ML parameter estimates for Stasis model
Note
These analytical solutions assume even spacing of samples and equal sampling variance in each, which will usually be violated in real data. They are used here mostly to generate initial parameter estimates for numerical optimization; they not likely to be called directly by the user.
See Also
Examples
y <- sim.GRW(ms = 1, vs = 1)
w <- mle.GRW(y)
print(w)
[Package paleoTS version 0.6.1 Index]