| opt.joint.GRW {paleoTS} | R Documentation |
Fit evolutionary models using the "Joint" parameterization
Description
Fit evolutionary models using the "Joint" parameterization
Usage
opt.joint.GRW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE
)
opt.joint.URW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE
)
opt.joint.Stasis(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE
)
opt.joint.StrictStasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)
Arguments
y |
a |
pool |
if |
cl |
optional control list, passed to |
meth |
optimization algorithm, passed to |
hess |
if TRUE, return standard errors of parameter estimates from the hessian matrix |
Details
These functions use the joint distribution of population means to fit models using a full maximum-likelihood approach. This approach was found to have somewhat better performance than the "AD" approach, especially for noisy trends (Hunt, 2008).
Value
a paleoTSfit object with the model fitting results
Functions
-
opt.joint.URW(): fit the URW model by the Joint parameterization -
opt.joint.Stasis(): fit the Stasis model by the Joint parameterization -
opt.joint.StrictStasis(): fit the Strict Stasis model by the Joint parameterization
Note
It is easier to use the convenience function fitSimple.
References
Hunt, G., M. J. Hopkins and S. Lidgard. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proc. Natl. Acad. Sci. USA 112(16): 4885-4890.
See Also
Examples
x <- sim.GRW(ns = 20, ms = 1) # strong trend
plot(x)
w.grw <- opt.joint.GRW(x)
w.urw <- opt.joint.URW(x)
compareModels(w.grw, w.urw)