A B C G I L M N O P R S U W misc
naniar-package | naniar |
add_any_miss | Add a column describing presence of any missing values |
add_label_missings | Add a column describing if there are any missings in the dataset |
add_label_shadow | Add a column describing whether there is a shadow |
add_miss_cluster | Add a column that tells us which "missingness cluster" a row belongs to |
add_n_miss | Add column containing number of missing data values |
add_prop_miss | Add column containing proportion of missing data values |
add_shadow | Add a shadow column to dataframe |
add_shadow_shift | Add a shadow shifted column to a dataset |
add_span_counter | Add a counter variable for a span of dataframe |
all_complete | Identify if there are any or all missing or complete values |
all_miss | Identify if there are any or all missing or complete values |
all_na | Identify if there are any or all missing or complete values |
any-all-na-complete | Identify if there are any or all missing or complete values |
any_complete | Identify if there are any or all missing or complete values |
any_miss | Identify if there are any or all missing or complete values |
any_na | Identify if there are any or all missing or complete values |
any_row_miss | Helper function to determine whether there are any missings |
any_shade | Detect if this is a shade |
are_shade | Detect if this is a shade |
as_shadow | Create shadows |
as_shadow_upset | Convert data into shadow format for doing an upset plot |
bind_shadow | Bind a shadow dataframe to original data |
cast_shadow | Add a shadow column to a dataset |
cast_shadow_shift | Add a shadow and a shadow_shift column to a dataset |
cast_shadow_shift_label | Add a shadow column and a shadow shifted column to a dataset |
common_na_numbers | Common number values for NA |
common_na_strings | Common string values for NA |
complete_case_pct | Proportion of variables containing missings or complete values |
complete_case_prop | Proportion of variables containing missings or complete values |
complete_var_pct | Proportion of variables containing missings or complete values |
complete_var_prop | Proportion of variables containing missings or complete values |
gather_shadow | Long form representation of a shadow matrix |
GeomMissPoint | naniar-ggproto |
geom_miss_point | geom_miss_point |
gg_miss_case | Plot the number of missings per case (row) |
gg_miss_case_cumsum | Plot of cumulative sum of missing for cases |
gg_miss_fct | Plot the number of missings for each variable, broken down by a factor |
gg_miss_span | Plot the number of missings in a given repeating span |
gg_miss_upset | Plot the pattern of missingness using an upset plot. |
gg_miss_var | Plot the number of missings for each variable |
gg_miss_var_cumsum | Plot of cumulative sum of missing value for each variable |
gg_miss_which | Plot which variables contain a missing value |
impute_below | Impute data with values shifted 10 percent below range. |
impute_below.numeric | Impute numeric values below a range for graphical exploration |
impute_below_all | Impute data with values shifted 10 percent below range. |
impute_below_at | Scoped variants of 'impute_below' |
impute_below_if | Scoped variants of 'impute_below' |
impute_factor | Impute a factor value into a vector with missing values |
impute_factor.character | Impute a factor value into a vector with missing values |
impute_factor.default | Impute a factor value into a vector with missing values |
impute_factor.factor | Impute a factor value into a vector with missing values |
impute_factor.shade | Impute a factor value into a vector with missing values |
impute_fixed | Impute a fixed value into a vector with missing values |
impute_fixed.default | Impute a fixed value into a vector with missing values |
impute_mean | Impute the mean value into a vector with missing values |
impute_mean.default | Impute the mean value into a vector with missing values |
impute_mean.factor | Impute the mean value into a vector with missing values |
impute_mean_all | Scoped variants of 'impute_mean' |
impute_mean_at | Scoped variants of 'impute_mean' |
impute_mean_if | Scoped variants of 'impute_mean' |
impute_median | Impute the median value into a vector with missing values |
impute_median.default | Impute the median value into a vector with missing values |
impute_median.factor | Impute the median value into a vector with missing values |
impute_median_all | Scoped variants of 'impute_median' |
impute_median_at | Scoped variants of 'impute_median' |
impute_median_if | Scoped variants of 'impute_median' |
impute_mode | Impute the mode value into a vector with missing values |
impute_mode.default | Impute the mode value into a vector with missing values |
impute_mode.factor | Impute the mode value into a vector with missing values |
impute_mode.integer | Impute the mode value into a vector with missing values |
impute_zero | Impute zero into a vector with missing values |
is_shade | Detect if this is a shade |
label_missings | Is there a missing value in the row of a dataframe? |
label_miss_1d | Label a missing from one column |
label_miss_2d | label_miss_2d |
mcar_test | Little's missing completely at random (MCAR) test |
miss-pct-prop-defunct | Proportion of variables containing missings or complete values |
miss_case_cumsum | Summarise the missingness in each case |
miss_case_pct | Proportion of variables containing missings or complete values |
miss_case_prop | Proportion of variables containing missings or complete values |
miss_case_summary | Summarise the missingness in each case |
miss_case_table | Tabulate missings in cases. |
miss_prop_summary | Proportions of missings in data, variables, and cases. |
miss_scan_count | Search and present different kinds of missing values |
miss_summary | Collate summary measures from naniar into one tibble |
miss_var_cumsum | Cumulative sum of the number of missings in each variable |
miss_var_pct | Proportion of variables containing missings or complete values |
miss_var_prop | Proportion of variables containing missings or complete values |
miss_var_run | Find the number of missing and complete values in a single run |
miss_var_span | Summarise the number of missings for a given repeating span on a variable |
miss_var_summary | Summarise the missingness in each variable |
miss_var_table | Tabulate the missings in the variables |
miss_var_which | Which variables contain missing values? |
n-var-case-complete | The number of variables with complete values |
n-var-case-miss | The number of variables or cases with missing values |
nabular | Convert data into nabular form by binding shade to it |
naniar | naniar |
naniar-ggproto | naniar-ggproto |
n_case_complete | The number of variables with complete values |
n_case_miss | The number of variables or cases with missing values |
n_complete | Return the number of complete values |
n_complete_row | Return a vector of the number of complete values in each row |
n_miss | Return the number of missing values |
n_miss_row | Return a vector of the number of missing values in each row |
n_var_complete | The number of variables with complete values |
n_var_miss | The number of variables or cases with missing values |
oceanbuoys | West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997. |
pct-miss-complete-case | Percentage of cases that contain a missing or complete values. |
pct-miss-complete-var | Percentage of variables containing missings or complete values |
pct_complete | Return the percent of complete values |
pct_complete_case | Percentage of cases that contain a missing or complete values. |
pct_complete_var | Percentage of variables containing missings or complete values |
pct_miss | Return the percent of missing values |
pct_miss_case | Percentage of cases that contain a missing or complete values. |
pct_miss_var | Percentage of variables containing missings or complete values |
pedestrian | Pedestrian count information around Melbourne for 2016 |
prop-miss-complete-case | Proportion of cases that contain a missing or complete values. |
prop-miss-complete-var | Proportion of variables containing missings or complete values |
prop_complete | Return the proportion of complete values |
prop_complete_case | Proportion of cases that contain a missing or complete values. |
prop_complete_row | Return a vector of the proportion of missing values in each row |
prop_complete_var | Proportion of variables containing missings or complete values |
prop_miss | Return the proportion of missing values |
prop_miss_case | Proportion of cases that contain a missing or complete values. |
prop_miss_row | Return a vector of the proportion of missing values in each row |
prop_miss_var | Proportion of variables containing missings or complete values |
recode_shadow | Add special missing values to the shadow matrix |
recode_shadow.data.frame | Add special missing values to the shadow matrix |
recode_shadow.grouped_df | Add special missing values to the shadow matrix |
replace_na_with | Replace NA value with provided value |
replace_to_na | Replace values with missings |
replace_with_na | Replace values with missings |
replace_with_na_all | Replace all values with NA where a certain condition is met |
replace_with_na_at | Replace specified variables with NA where a certain condition is met |
replace_with_na_if | Replace values with NA based on some condition, for variables that meet some predicate |
riskfactors | The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009. |
scoped-impute_mean | Scoped variants of 'impute_mean' |
scoped-impute_median | Scoped variants of 'impute_median' |
set-prop-n-miss | Set a proportion or number of missing values |
set_n_miss | Set a proportion or number of missing values |
set_prop_miss | Set a proportion or number of missing values |
shade | Create new levels of missing |
shadow_long | Reshape shadow data into a long format |
shadow_shift | Shift missing values to facilitate missing data exploration/visualisation |
StatMissPoint | naniar-ggproto |
stat_miss_point | stat_miss_point |
unbinders | Unbind (remove) shadow from data, and vice versa |
unbind_data | Unbind (remove) shadow from data, and vice versa |
unbind_shadow | Unbind (remove) shadow from data, and vice versa |
where | Split a call into two components with a useful verb name |
where_na | Which rows and cols contain missings? |
which_are_shade | Which variables are shades? |
which_na | Which elements contain missings? |
.where | Split a call into two components with a useful verb name |