impute_below {naniar} | R Documentation |
Impute data with values shifted 10 percent below range.
Description
It can be useful in exploratory graphics to impute data outside the range of
the data. impute_below
imputes variables with missings to have values
10 percent below the range for numeric values, plus some jittered noise,
to separate repeated values, so that missing values can be visualised
along with the rest of the data. For character or factor
values, it adds a new string or label.
Usage
impute_below(x, ...)
Arguments
x |
a variable of interest to shift |
... |
extra arguments to pass |
See Also
add_shadow_shift()
cast_shadow_shift()
cast_shadow_shift_label()
Examples
library(dplyr)
vec <- rnorm(10)
vec[sample(1:10, 3)] <- NA
impute_below(vec)
impute_below(vec, prop_below = 0.25)
impute_below(vec,
prop_below = 0.25,
jitter = 0.2)
dat <- tibble(
num = rnorm(10),
int = as.integer(rpois(10, 5)),
fct = factor(LETTERS[1:10])
) %>%
mutate(
across(
everything(),
\(x) set_prop_miss(x, prop = 0.25)
)
)
dat
dat %>%
nabular() %>%
mutate(
num = impute_below(num),
int = impute_below(int),
fct = impute_below(fct),
)
dat %>%
nabular() %>%
mutate(
across(
where(is.numeric),
impute_below
)
)
dat %>%
nabular() %>%
mutate(
across(
c("num", "int"),
impute_below
)
)
[Package naniar version 1.1.0 Index]